Benutzer:Karina Hetterich: Unterschied zwischen den Versionen
(→Test) Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(21 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
Außerdem probiere und bastle ich hier herum.... | Außerdem probiere und bastle ich hier herum.... | ||
==BO== | |||
https://rmgwiki.zum.de/wiki/BO | |||
==Fortbildung== | |||
[[Benutzer:Karina_Hetterich/Fortbildung|Fortbildung]] | |||
[[https://rmgwiki.zum.de/wiki/ | {{Box|1=Erklärung|2= | ||
Heute kannst du zwischen zwei Varianten wählen. <br> | |||
- Variante 1 = Üben, üben, üben <br> | |||
- Variante 2 = Erklärfilm drehen<br> | |||
Lies die Beschreibungen und entscheide dich für eine Variante.<br> | |||
Denke an den Wochen-Check! | |||
|3=Kurzinfo}} | |||
{{Box|1=Variante 1|2= | |||
Wenn du den Stoff von dieser Woche üben möchtest, dann bearbeite: | |||
# S.109/19 mind. 6 Aufgaben und mache die Probe. Lade die Aufgaben im Schulmanager hoch. | |||
# Bearbeite den [https://mathegym.de/arbeitsauftrag-id/24453 mathegym-Arbeitsauftrag] '''vollständig.''' | |||
Wenn du noch Fragen hast, komme in die Videokonferenz. | |||
|3=Arbeitsmethode}} | |||
{{Box|1=Variante 2|2= | |||
Wenn du den Stoff schon kannst, drehe ein Erklärvideo. | |||
# Wähle eine Aufgabe von S.109/19 oder S.114/9 aus und berechne diese. <br> | |||
# Mache die Probe, ob dein Ergebnis stimmt. <br> | |||
# Nun wollen wir ein Erklärvideo drehen. Könnt ihr euch noch an das Legeverfahren erinnern? <br> | |||
: -Hier noch mal der Link, wie ein Erklärvideo mit Legetechnik entsteht: [https://www.youtube.com/watch?v=jr34H5LMAm0 Video] | |||
: -Ein Storyboard brauchen wir nicht, aber überlege dir, wie du deine Rechnung in Schritte aufteilen kann. | |||
: -Schreibe einzelne Schritte in einer lesbaren Schrift auf Papierschnipsel. | |||
: -Überlege dir hilfreiche Symbole. | |||
: -Überlege dir, wie du die Rechenregeln erklären kannst. | |||
: -Drehe das Video. | |||
Lade das Video im Schulmanager hoch. | |||
|3=Üben}} | |||
{{Box|1=Wochen-Check|2= | |||
Heute ist wieder Wochen-Check. <br> | |||
Kontrolliere dein Merkheft. Hier sollte es folgende Einträge geben: | |||
- Merksatz zur Kommaverschiebung beim Multiplizieren | |||
- Division eines Dezimalbruches mit einer natürlichen Zahl + BEISPIELE | |||
- Division eines Dezimalbruches durch eine Dezimalzahl + BEISPIELE | |||
Wichtige Übungen | |||
- S.110/4 | |||
- S.110/5 i,j,k,l | |||
- S.114/8a,e,i | |||
- Anton die letzten vier Kapitel von „Multiplikation und Division von Dezimalzahlen“ | |||
|3=Lösung}} | |||
== Sammlung == | |||
[[MatheFörderung2021| Übung]] | |||
https://rmgwiki.zum.de/wiki/6d_2019_20/Flächeninhalt_eines_Dreiecks_(2) | |||
Lernvideos mit Legetechnik | |||
* https://www.youtube.com/watch?v=2uz4Vizvn6c | |||
* https://www.youtube.com/watch?v=d-aXNmOIzPY | |||
== Test == | |||
<br> | <br> | ||
<br> | [[Benutzer:Karina_Hetterich/FAQ_iPads_2021| FAQ iPads 2020]] <br> | ||
[https://rmgwiki.zum.de/wiki/Benutzer:Karina_Hetterich/iPads iPads] <br> | |||
[https://rmgwiki.zum.de/wiki/Benutzer:Karina_Hetterich/iPadsEinsatzmöglichkeiten Einsatzmöglichkeiten iPads] | |||
== Vierecke == | === Vierecke === | ||
<div class="multiplechoice-quiz"> | <div class="multiplechoice-quiz"> | ||
Zeile 39: | Zeile 86: | ||
{{Lösung versteckt|Nicht jedes Rechteck ist ein Quadrat, denn ein Quadrat ist ein Rechteck mit vier gleich langen Seiten. Also nur wenn bei einem Rechteck alle vier Seiten gleich lang sind, nennt man es Quadrat.|Erklärung anzeigen|Erklärung verbergen}} | {{Lösung versteckt|Nicht jedes Rechteck ist ein Quadrat, denn ein Quadrat ist ein Rechteck mit vier gleich langen Seiten. Also nur wenn bei einem Rechteck alle vier Seiten gleich lang sind, nennt man es Quadrat.|Erklärung anzeigen|Erklärung verbergen}} | ||
<div style="width: 922px; height: 300px; text-align: center"> | |||
{{#ev:youtube|MsKNCIxsg88|400|center}} | |||
</div> | |||
== WR12 == | |||
[https://rmgwiki.zum.de/wiki/WR_12 WR 12] | |||
<br> | |||
<br> | |||
{{Lösung versteckt|Text zum Verstecken|Label fürs Anzeigen|Label fürs Verbergen}} | |||
== Sammlung M5== | |||
[[Kopfmathematik5|Kopfmathematik 5]]<br> | |||
[[ÜbungAddierenganzerZahlen|Addition ganzer Zahlen]]<br> | |||
[[Überblick Negative Zahlen|Überblick Negative Zahlen]] | |||
==Sammlung Q12== | ==Sammlung Q12== |
Version vom 1. Mai 2022, 18:54 Uhr
Meine Baustelle: Hier sammle ich Material und bereite Seiten vor die irgendwann mal online gehen. Außerdem probiere und bastle ich hier herum....
BO
https://rmgwiki.zum.de/wiki/BO
Fortbildung
Sammlung
https://rmgwiki.zum.de/wiki/6d_2019_20/Flächeninhalt_eines_Dreiecks_(2)
Lernvideos mit Legetechnik
Test
FAQ iPads 2020
iPads
Einsatzmöglichkeiten iPads
Vierecke
Was ergibt 1 + 1? (!2,2) (2) (!1,9) (!3)
Welches Tier ist ein Säugetier? (!Hai) (Wal) (Känguru) (!Meise) (Maus) (!Biene)
Jedes Rechteck ist ein Quadrat? (!ja) (Nein)
WR12
Sammlung M5
Kopfmathematik 5
Addition ganzer Zahlen
Überblick Negative Zahlen
Sammlung Q12
Geometrie
Hier findet ihr eine Mindmap mit dem Überblick über den kompletten Geometrie-Stoff. Datei:Geo Abiturzusammenfassung mind map.pdf
Grundlagen Geometrie
Geraden
Gerade aufstellen
Unterschied Orts-& Richungsvektor
Punktprobe
Spurpunkte
Besondere Lage
Ebenen
Lage im Raum:
Ebene aufstellen - Parameterform
Ebene aufstellen bei verschiedenen Angaben:
Wofür brauche ich den Normalenvektor?
Normalenform aufstellen
Grundidee:
Im Video wird das Symbol * für das Skalarprodukt verwendet, wir benutzen hier immer den „Kringel“ ° .
Beispielaufgabe
Hier wird auch wieder für das Skalarpodukt das *Symbol verwendet.
weiterhin ist es sinnvoll den Normalenvektor zu kürzen.
Umwandeln der verschiedenen Formen
Lagebeziehungen
Lagebeziehung Geraden
Lagebeziehung Ebenen
Für die Lage einer Ebene zu einer Ebene gibt es 3 Möglichkeiten: Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich.
Für die Untersuchung der Lagebeziehungen gibt es viele Möglichkeiten, je nachdem in welcher Form die Ebenen gegeben sind.
Generell ist es sinnvoll zunächst die Normalenvektoren der Ebenen zu betrachten. Ist eine Ebene in Parameterform gegeben, muss dafür zunächst der Normalenvektor berechnet werden. Sind die beiden Normalenvektoren linear abhängig sind die Ebenen parallel oder identisch. Dies kann mit einer Punktprobe überprüft werden. Sind die Normalenvektorn linear unabhängig, so schneiden sich die Ebenen in einer Schnittgerade. (siehe Spezialfall)
Sind die beiden Ebenen in Parameterform gegeben, ist das Vorgehen wie folgt:
Spezialfall: Schnittgerade berechnen
Beide Ebenen in Normalenform
Normalenform und Parameterform
Lagebeziehung Ebene - Gerade
Übersicht über verschiedene Möglichkeiten
Beispielaufgabe
Abstandsprobleme
Abstand Punkt - Punkt
Abstand Punkt - Gerade
hier gibt es generell zwei Möglichkeiten:
"Mal" heißt hier Skalarpodukt berechnen
Variante 2: Hilfsebene
Abstand paralleler Geraden
Parallele Geraden haben überall denselben Abstand. Daher lässt sich das Problem auf das Problem Abstand Punkt-Gerade zurückführen. Berechne daher den Abstand eines Punktes von g_1 (z.B. Aufpunkt) zur Geraden g_2.
Abstand windschiefer Geraden
Dann Abstandsberechnung wie bekannt.
Beispielaufgabe
Abstand Punkt - Ebene
Hier gibt es auch zwei Möglichkeiten:
Variante 1: HNF verwenden
Achtung: Hier fehlt immer wieder bei der Ebenengleichung =0. Bei der Berechnung des Abstands bitte Betragsstriche setzen.
Variante 2: Lotgerade aufstellen
Abstand paralleler Ebenen
Da parallele Ebenen überall denselben Abstand haben, lässt sich dieses Problem auf das Problem Abstand Punkt-Ebene zurückführen. Wähle also einen Punkt der Ebene E_1 aus (z.B. Aufpunkt) und berechne den Abstand zur Ebene E_2.
Material aus dem Unterricht
Lösung zu Übungsblatt Abstandprobleme
http://rmg.zum.de/wiki/Q12_Mathematik/Übung_Abstandsprobleme
Lösungen zu Aufgaben aus dem Buch
- Seite 134/2b und 3 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite134_2b_3
- Seite 135/11 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite135_11
- Seite 143/6 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite143_6
- Seite 143/9 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite143_9
- Seite 144/15 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite144_15
- Seite 145/19 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite145_19
- Seite 145/21 http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite145_21
Sammlung M5
Grundwissen
1x1
https://learningapps.org/display?v=pvs8wgusk17
https://learningapps.org/display?v=phe357spn17
https://learningapps.org/display?v=p3psvfjt317
Kopfrechnen
https://learningapps.org/display?v=pvk2dkhx101
https://learningapps.org/display?v=pcsbunr5v
Rechnen mit natürlichen Zahlen und Größen
Längen& Größeneinheiten:
https://learningapps.org/2595847
https://learningapps.org/1601799
https://learningapps.org/1929722
https://learningapps.org/display?v=p37rzc1zn20
Zahlenmauern: https://learningapps.org/display?v=pz8j3wft319
Rechengesetze: https://learningapps.org/674753
Distributivgesetz: https://learningapps.org/display?v=pxdh6eikc20