Benutzer:Thomas Lux/Test Oberstufe

Aus RMG-Wiki

Enzympraktikum

Molekulare Grundlagen

Versuche mit Urease
Q11 B Enzympr MolekGrndl Urease.jpg


Versuche mit Katalase
Q11 B Enzympr MolekGrndl Katalase.jpg

Versuche im Unterricht

Substratspezifität der Urease

Q11 B Enzympr VBeschr Urease.jpg Q11 B Enzympr Erg Urease.jpg



pH-Abhängigkeit der Katalase

Q11 B Enzympr VBeschr Katalase.jpg Q11 B Enzympr Erg Katalase.jpg

Weitere Versuche

Nicht alle Versuche des Enzym-Praktikums konnten im Unterricht durchgeführt werden. Das würde den zeitlichen Rahmen sprengen. Das folgende Skript enthält jedoch weitere Versuchsanleitungen und Fotos der Ergebnisse aus vergangenen Jahren.

  • Ladet das Skript herunter (bitte nicht ausdrucken, wer es unbedingt physisch haben möchte: Ich werde am Mittwoch einige Exemplare mitbringen)
  • Beschreibt zunächst für alle Ergebnisse die Beobachtung (mündlich, nicht schriftlich)
  • Versucht dann, die Eregbniss mit eurem Wissen über die Funktionsweise von Enzymen zu erklären (mündlich, nicht schriftlich)
  • Eine Verbesserung erfolgt im Unterrich am 05.10.

Hier das Skript zum Download: pdf-Datei

Corona-Sonderregeln

Bildung der Halbjahresleistung (HJL) für den Ausbildungsabschnitt 11/1


Regelungen für Sport


Regelungen für die Seminare


Bildung der Halbjahresleistung (HJL) für den Ausbildungsabschnitt 11/2


Zeitplan


Distanz-Unterricht, Montag 08.03: Q11-Corona-Recap

Wiederholung aller bisherigen Einheiten

Die folgende Einheit stellt eine Wiederholung einiger Einheiten dar, die in den letzten Wochen während des Home-Schoolings besprochen wurden. Bitte prüft, ob ihr die folgenden Fragen beantworten könnt. Natürlich liegen manche Inhalte schon etwas länger zurück, daher dürft ihr gerne auf dieser Seite scrollen, um zu einer Lösung zu gelangen.
Ihr erhaltet am Montag, 08.03. den klassischen "Start-in-den-Tag-Arbeitsauftrag" über den Schulmanager. Ich hätte gerne von ALLEN ein Feedback, welche Fragen für euch nicht lösbar waren und welche nicht. Das Feedback soll als Antwort auf den Arbeitsauftrag im Schulmanager erfolgen (entweder ein Foto von euren handschriftlichen Aufzeichnungen oder ein Textdokument hochladen). Ihr habt Zeit prinzipiell Zeit bis Mittwoch, 23:59 Uhr, empfehle aber dringend das Feedback sofort nach der Unterrichtsdoppelstunde (also 09:30 Uhr) abzugeben. Das Feedback stellt für mich eine wichtige Grundlage für das weitere Vorgehen im Unterricht dar.
Bitte beachtet jedoch folgendes:

  • Solltet ihr mir rückmelden, dass ihr keine einzige Frage beantworten konntet, bedeutet das nicht, dass ich im Unterricht alles wiederholen werde. Definitiv nicht.
  • Wenn ihr während des Home-Schoolings keine Arbeitsaufträge hier im Wiki erledigt habt, dann brauche ich auch kein Feedback zu den Fragen von euch. Antwortet auf den Arbeitsauftrag im Schulmanager einfach mit "Keine Teilnahme".
  • Ich gehe davon aus, dass viele von euch alle Fragen (evtl. mit ein bisschen Recherche) beantworten können. In dem Fall antwortet auf den Arbeitsauftrag im Schulmanager einfach mit "Alles o.k." (o.ä.)


Los geht´s:



Stammbaumanalyse + Heterozygoten-Test, pränatale Diagnosemöglichkeiten
  • Bei der Mukoviszidose handelt es sich um eine autosomal-rezessiv vererbte Krankheit. Eine phänotypisch gesunde Frau möchte wissen, wie hoch die Wahrscheinlichkeit dafür ist, dass sie ein Kind zur Welt bringt, das an Mukoviszidose leidet. Der Grund ihrer Besorgnis ist ihr Bruder, der ebenfalls an dieser Krankheit leidet. Ihre Schwester und ihre Eltern sind jedoch phänotypisch gesund.
    • Geben Sie - soweit das möglich ist - alle möglichen Genotypen aller genannten Personen!
    • Welche Aussagen über die Wahrscheinlichkeit eines kranken Kindes kann man treffen?
  • Was ist ganz allgemein ein "Heterozygoten-Test"? (Kein konkretes Beispiel).
  • Beschreibe kurz zwei pränatale Diagnosemöglichkeiten!


Numerische Chromosomen-Aberrationen
  • Nenne eine häufig vorkommende, lebensfähige autosomale, numerische Chromosomenaberration!
  • Nenne eine häufig vorkommende, lebensfähige gonosomale, numerische Chromosomenaberration!
  • Beschreibe möglichst detailliert das Phänomen "Non-Disjunction"!


DNS als Träger der Erbinformation, Bau der DNS
  • Nenne die Grundbausteine der DNS!
  • Erkläre in Bezug auf die DNS die Begriffe "komplementär und antiparallel"!
  • Wie lautet die Sequenz des komplementären Strangs zu 5´-TCTGAG-3´


Die Replikation
  • Warum muss die DNS überhaupt repliziert werden?
  • Bei der Replikation spielen die Enzyme "Helicase", "DNS-Polymerase", "Primase" und "Ligase" eine wichtige Rolle. Beschreibe von jedem Enzym kurz die Aufgabe!
  • Betrachtet den leading-strand: Eines der oben genannten Enzyme ist hier nicht nötig. Welches?
  • Warum gibt es Okazaki-Fragmente? (Achtung: Die Frage lautet nicht: Was sind Okazaki-Fragmente? Aber das sollte man natürlich trotzdem wissen.)


Feedback

Jetzt bitte das Feedback über den Schulmanager abgeben. Danke! - Videokonferenz am Donnerstag.


Distanzunterricht, Montag 01.03.

Einstieg/Wiederholung

Zur Erinnerung: Das langfristige Ziel dieser Einheit ist es, zu klären, wie ein Stück DNS die Ausprägung eines Merkmals (also z.B. eure Haarfarbe) beeinflussen kann.
In der letzten Einheit habt ihr den Aufbau der DNS kennengelernt. Bevor wir uns anschauen, wie dieser Aufbau nun ein sichtbares Merkmal beeinflussen kann, zunächst ein Zwischenschritt:

Euer aktueller Körper, in dem ihr steckt, besteht aus ca. 100 000 000 000 000 Zellen. Entstanden seid ihr aber alle zunächst aus einer einzigen befruchteten Eizelle. Das Erbgut in dieser befruchteten Eizelle musste sehr oft vervielfältigt werden, damit alle Zellen eures heutigen Körpers exakt das gleiche Erbgut enthalten und eine Einheit bilden. Ihr kennt den Prozess schon, der hierbei eine entscheidende Rolle spielt: Die Mitose.
Sucht das Arbeitsblatt zum Thema Mitose heraus (auch im Buch wäre eine Abbildung)! Analysiert die einzelnen Schritte noch einmal und formuliert dann einen Satz, der die relativ simple Frage beantwortet:

  • Was passiert in der Meiose (weniger auf den Mechanismus eingehen, sondern auf das Ergebnis)?


Vorüberlegung 1

Die Tochterzellen einer Zelle, die sich soeben geteilt hat, besitzen also nur die Hälfte des "normalen" Erbguts. Die folgende Abbildung verdeutlicht die Situation noch einmal an einem Chromosom. Macht euch anhand dieser Abbildung noch einmal klar: Aus wie vielen DNS-Fäden besteht das Erbgut eines Menschen? Ohne numerische Chromosomenaberration! (was war das noch mal?)
Repli Vgl Chromo DNS.jpg



Vorüberlegung 2

Damit sich eine Tochterzelle erneut teilen kann, muss das "halbe Erbgut" zunächst wieder verdoppelt werden. Dieser Prozess nennt sich Replikation. Die Forscher, die maßgeblich an der Entschlüsselung dieses Prozesses mitgewirkt haben, waren Matthew Meselson und das Ehepaar Mary und Frank Stahl (müssten alle noch leben). Das Meselson-Stahl-Experiment soll hier nachempfunden werden.
Rein theoretisch gibt es drei verschiedene Möglichkeiten wie ein DNS-Faden repliziert (verdoppelt) werden kann:

  • konservativ: Könnte man mit einem Kopierer vergleichen. Es gibt ein Orginal, das unverändert bleibt und ein Duplikat, das aus neuen Bausteinen zusammengebastelt wird.
  • semikonservativ: Bei der DNS sind die beiden Einzelsträng komplementär. Das bedeutet, wenn ich den einen Einzelstrang kenne, kann ich den fehlenden einfach erzeugen. Das ermöglich eine semikonservative Replikation: Die doppelsträngige DNS wird in ihre zwei Einzelstränge getrennt, und der komplementäre wird jeweils neu ergänzt.
  • dispers: Das könnte man wohl am ehesten mit... "irgendwie" oder "durcheinander" übersetzen. Gemeint ist: Das Original wird zerstückelt und mit neuen Bausteinen zu zwei Abbildungen des Originals wieder zusammengesetzt. Dafür gibt es in unserer Lebensumwelt kein vernünftiges Beispiel.

Die folgenden Abbildungen zeigen einen grafischen Überblick über diese drei Varianten:
Repli Mechanismen denkbareVarianten.jpg

Repli Mechanismen denkbareVarianten einfach.jpg

Das Problem an dieser Darstellung: Auf den Bildern könnt ihr aufgrund von Farben sehr schön sehen, welcher Teil der DNS alt ist und welcher neu. In der Realität geht das nicht! Erstens gibt es überhaupt kein Mikroskop, mit dem man einen DNS-Strang überhaupt sehen könnte und selbst wenn, wüsste man nicht, was an einem DNS-Strang alt und was neu ist...
Wir haben schon oft über solche Phänomene gesprochen: Man braucht ein Experiment, mit dem man etwas sichtbar machen kann, was eigentlich nicht sichtbar ist. Und genau hier kommt das Experiment von Meselson und Stahl ins Spiel. Sie machten sich folgenden Effekt zu Nutze: Isoliert man DNS aus Bakterien, kann man sie in einem Reagenzglas auf eine Salz-Lösung auftragen und den Ansatz stark zentrifugieren. Je nachdem, wie "schwer" (das ist nicht ganz korrekt, aber ich bleibe mal bei diesem Begriff) die DNS ist, wird sie beim Zentrifugieren durch die Zentrifugalkraft im Reagenzglas weiter nach unten gedrückt (oder gezogen, wie ihr wollt).
Repli MeselsonStahl VDesign.jpg
Wenn man das Experiment mehrfach wiederholt, kommt logischerweise immer das gleiche Ergebnis heraus: Die isolierte DNS wandert immer die gleiche Strecke im Reagenzglas nach unten. Meselson und Stahl haben nun aber einen Weg gefunden, die DNS in den Bakterien zu manipulieren. Sie konnten sie schwerer machen als normal: Sie ließen die Bakterien auf einem Medium wachsen und sich vermehren, welches schwere Stickstoff-Atome enthielt (man symbolisiert schweren Stickstoff mit 15N). Auch die DNS enthält Stickstoff-Atome. Normalerweise leichten Stickstoff (14N), weil nur der in der Natur in großen Mengen vorkommt. Nachdem den Bakterien im Versuch aber nur schwerer Sticktstoff 15N zur Verfügung stand, mussten sie diesen zum Aufbau ihrer DNS heranziehen. Lässt man die Bakterien lange genug in diesem 15N-Medium wachsen, enthalten sie nach einiger Zeit nur noch "schwere DNS". Zentrifugiert man nun die DNS von diesen Bakterien, stellt man tatsächlich fest, dass diese DNS etwas weiter nach unten gedrückt/gezogen wird als die leichte DNS der ursprünglichen Bakterien.
Repli MeselsonStahl U N14 N15.jpg

Was bringt das jetzt?

Noch gar nichts! Man kann erstmal nur unterscheiden, ob die DNS schwer oder leicht ist. Aber der Versuch war noch nicht zu Ende. Meselson und Stahl überführten nun Bakterien, die ihr Leben lang auf Medium mit schwerem Stickstoff 15N gewachsen waren, auf ein neues Medium, das nur leichten Stickstoff 14N enthielt. Dort durften die Bakterien genau so lange bleiben, bis sie sich einmal geteilt hatten, das Erbgut also genau einmal verdoppelt worden war.
Anschließend wurde die DNS wieder isoliert und zentrifugiert.

Welches Ergebnis sollte man erhalten, bei:

  • einer konservativen,
  • einer semikonservativen und
  • einer dispersen

Replikation?



Wie funktioniert´s?

Schaut das Video, welches zeigt, wie die Replikation auf molekularer Ebene abläuft! Beantwortet während des Videos bzw. danach folgende Fragen:

  • Was macht die Helicase?
  • Wie heißt das Enzym, das aus RNA-Stückchen einen kleinen Primer formt?
  • Warum kann der "leading-strand" (Vorwärts-Strang) in einem Stück ergänzt werden, der "lagging-strand" (Rückwärts-Strang) nicht?
  • Was ist ein Okazaki-Fragment?
  • Was macht die Ligase?



Hausaufgabe

Lesen: Buch, S. 63 - 65 (ohne den blauen Zettelkasten)
Aufgaben:

  • Beschreibe das sichtbare Ergebnis, wenn man die Bakterien im Versuch von Meselson und Stahl nicht einen Teilungszyklus lang, sondern zwei Teilungszyklen lang auf Medium mit leichtem Stickstoff wachsen lässt!
  • Untermauere Deine Beschreibung durch das Anfertigen einiger aussagekräftiger Skizzen!

Distanzunterricht, Montag 15.02.

Zu bearbeiten: Am besten heute.
Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel, Stift, eine Internetverbindung, um Videos zu schauen. Und Ruhe!
Die Bearbeitungszeit sollte unter 90 Minuten liegen.
Die optionalen Inhalte sind nicht in die Bearbeitungszeit mit einberechnet.

Abweichungen vom normalen Chromosomensatz

Die meisten von den bisher im Unterricht aufgetretenen Erbkrankheiten haben ihre Ursache in einem defekten Gen, also einem kleinen Abschnitt DNA in einem Chromosom. In dieser Einheit soll es um eine Gruppe von Erbkrankheiten gehen, bei denen eine andere Ursache eine Rolle spielt. Betrachtet dazu das folgende Karyogramm eines Menschen:
GenomMut KaryogrammT21.jpg

  • Beschreibt dieses Karyogramm!


Bevor wir uns mit den Konsequenz dieser Abweichung beschäftigen zunächst ein Blick auf die Ursachen: Wie kommt es dazu, dass hier eine Trisomie 21 vorliegt (tri = drei, soma = das Körperchen; gemeint ist also: das dreifache Vorliegen des 21. Körperchens/Chromosoms).
Das folgende Video ist auf englisch. Das macht aber nichts. Wenn ihr gut in Englisch seid, könnt ihr versuchen den gesprochenen Text zu verstehen. Wenn nicht, konzentriert euch auf die Animationen und die geschriebenen Fachbegriffe. Und ignoriert bitte die Kommentare...
Schaut bitte lediglich bis zum Zeitindex 3:41 min! Der restliche Teil des Videos kann später freiwillig angeschaut werden:


Zusammenfassung: Ursachen für eine Trisomie 21 sind also Nondisjunction-Ereignisse, in der Regel gekennzeichnet durch das Symbol N!.

  • Beschreibe mit Worten, was das bedeutet!


Ihr sollt dieses Phänomen selbst noch einmal zeichnen. Betrachtet eine hypothetische Urkeimzelle mit nur einem Chromosomenpaar. Zeichne die Schritte, die durch ein N! in der zweiten meiotischen Teilung zu einer Eizelle führen, die nach der Befruchtung mit einem "normalen" Spermium in einer Trisomie mündet.



Im Film wurde auch bereits auf die Monosomien eingegangen. Im oben gezeichneten Beispiel würde eine Monosomie entstehen, wenn die zweite Eizelle von links durch ein "normales" Spermium befruchtet werden würde. Monosomien (also Zustände, bei denen von einem Chromosom nur eine Kopie in der Zelle vorliegt) sind immer tödlich. Eine befruchtete Eizelle mit einer derartigen Ausstattung an Chromosomen entwickelt sich nicht oder kaum zu einem Fötus bzw. Embryo heran. Eine Ausnahme existiert, auf die wird später eingegangen: Menschen mit 44 normalen Autosomen aber nur einem X-Chromosom. Man könnte von einer "Monosomie 23" sprechen (tut man aber nicht).
In eurem Buch auf der Seite 92 sind die Auswirkungen einer Trisomie 21, auch bekannt unter dem Namen Down-Syndrom, aufgeführt. Lest diese Seite!

Schließt jetzt das Buch und beantwortet folgende Fragen:

  • Woher hat das Down-Syndrom seinen Namen?
  • Was ist ein Polkörperchen und was hat das mit Trisomien zu tun? (Was ein Polkörperchen ist, steht nicht hier im Text, wurde aber früher bereits besprochen.)
  • Was für ein Faktor beeinflusst die Häufigkeit des Auftretens von N! ?


Früher war es üblich bei der Besprechung des Down-Syndroms alle möglichen Symptome aufzuzählen. Dadurch entstand der Eindruck, Menschen mit Trisomie 21 sind immer hochgradig behindert. Das trifft jedoch nicht zu. In vielen Fällen sind nur wenige der möglichen Symptome, teilweise auch nur sehr schwach ausgeprägt. Vor allem wenn die Trisomie 21 früh entdeckt wird, z.B. durch pränatale Diagnostik, können frühkindliche Fördermaßnahmen dazu führen, dass sich Kinder mit Trisomie 21 nahezu normal entwickeln.

  • Wiederholung: Beschreibe eine pränatale Diagnose-Möglichkeit, um Trisomie 21 festzustellen!



Optional (freiwillig)

Es gibt eine ganze Reihe von Dokumenten (Filme etc.), die zeigen, dass Menschen mit Down-Syndrom eben nicht "weniger intelligente Behinderte" sein müssen. Die folgende Seite gehört zur regelmäßig erscheinenden Zeitschrift "Ohrenkuss", die ausschließlich von Menschen mit Down-Syndrom produziert wird. Wer will, kann darin stöbern:


In den Bildern dieser Unterrichtseinheit wird immer die "freie Trisomie" dargestellt. Das bedeutet: Alle drei Chromosomen sind frei beweglich. Es gibt aber auch Formen, die entstehen, weil Chromosomen miteinander verkleben. In der Fachsprache nennt man das eine Translokation. Wer will kann jetzt den Film vom Anfang weiter schauen, indem das Zustandekommen der Translokationstrisomie 21 erklärt wird.


andere Trisomien

N! kommen tatsächlich sehr häufig vor. In den meisten Fällen entwickeln sich aus befruchteten Eizellen, die Trisomien enthalten aber keine Embryonen oder Föten. Warum ein zusätzliches Chromosom in den meisten Fällen letal (tödlich) ist, kann an dieser Stelle nicht geklärt werden, auch weil noch nicht alle Prozesse vollständig verstanden sind. Letztlich liegt es wohl an einem Ungleichgewicht von Enzymen, die entstehen.

Nachdem das Chromosom 21 klein ist, könnte dies erklären, warum eine Trisomie 21 nicht tödlich ist. Die entstehenden Ungleichgewichte im Zellhaushalt scheinen für den Organismus verkraftbar. Zwei weitere Trisomien, die deutlich seltener auftreten und mit massiven Störungen der Entwicklung einhergehen sind die Trisomie 18 (Edwards-Syndrom) und die Trisomie 13 (Pätau-Syndrom). Bei der Trisomie 18 liegt die Todesrate innerhalb der ersten sechs Tage nach der Geburt z.B. bei 50%.


Optional (freiwillig)

Wenn ihr Schwierigkeiten mit dieser Art von Themen habt (Behinderungen, Tod, Ausgrenzung), empfehle ich euch diesen Punkt wirklich zu überspringen oder jemanden dazu zu holen. Im Unterricht kann man hier bestimmte Ängste, Vorurteile etc. abfangen, im Moment müsst ihr aber alleine klarkommen.
Verschafft euch auf den folgenden WIKIPEDIA-Seiten einen Überblick über die Symptome, Lebenserwartung und Behandlungsmöglichkeiten bei:


Gonosomale Abweichungen

Die bisher besprochenen numerischen Chromosomenabberationen (zahlenmäßige Abweichung von der Chromosomen-Anzahl) betrafen ausschließlich die Autosomen. Es können aber auch die Gonosomen betroffen sein. Man unterscheidet folgende Typen:
GenomMut gonosAbberat Übersicht.jpg

Lest im Buch die S. 99 und bearbeitet die Aufgaben 1 - 4!







Fertig für heute!
Bereitet euch auf die Videokonferenz am Donnerstag vor, indem ihr kurz vorher diese Seite noch einmal überfliegt und den Hefteintrag herunter ladet.



Distanzunterricht Montag, 08.02.

Zu bearbeiten: Am besten heute. Ihr könnt gerne zusammen an dieser Einheit arbeiten, indem ihr euch über ein Kommunikations-Tool eurer Wahl Kontakt aufnehmt.
Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel und einen Stift.
Die Bearbeitungszeit wird 90 Minuten sicher nicht überschreiten.

Die optionalen Inhalte sind jedoch nicht in die Bearbeitungszeit mit eingerechnet.


Wiederholung: Stammbaumanalysen

Wie in der letzten Unterrichts-Stunde angedeutet hat das Analysieren von Stammbäumen eine ganz praktische Bedeutung: Man kann damit z.B. die Wahrscheinlichkeit ableiten, mit der ein Kind geboren wird, das Träger einer Erbkrankheit ist.

  • Lest zunächst auf S. 109 in der linken Spalte die Absätze 1, 2 und 4
  • Zeichnet unter Angabe aller möglichen Genotypen einen Stammbaum für eine Familie, in der ein autosomal-dominant vererbtes Merkmal (z.B. das Marfan-Syndrom) vorkommen soll: Ein gesunder Mann heiratet eine Frau, die das Marfan-Syndrom zeigt. Die beiden Geschwister der Frau (ein Bruder, eine Schwester) sind phänotypisch unauffällig, ebenso wie die Mutter. Der Vater litt allerdings auch am Marfan-Syndrom.
  • Berechnen Sie die Wahrscheinlichkeit dafür, dass ein Kind des eingangs genannten Paares das Marfan-Syndrom aufweisen wird.



Optional (= freiwillig)
  • Es gibt einen berühmten Fall von einer Frau, die das Marfan-Syndrom zeigt. Wer will, kann Lizzie Velásquez recherchieren.


Wiederholung: Stammbaumanalysen 2

Die Aufgabe 1 auf der S. 110 beschäftigt sich mit einer Familie, in der die Bluterkrankheit vorkommt. Diese wird gonosomal-rezessiv vererbt. Löst die Aufgabe mit folgender Änderung: ... Ermitteln Sie über einen Stammbaum der Familie das Risiko, mit dem ein Kind dieser Frau ebenfalls bluterkrank sein wird.

  • Zeichnet zunächst den Stammbaum unter Angabe aller möglichen Genotypen!


  • Berechnet jetzt die Wahrscheinlichkeit für ein Kind, das an der Bluterkrankheit leidet


Der Heterozygoten-Test

Das letzte Beispiel zeigt auch, dass es bei rezessiv vererbten Merkmalen einen entscheidenden Unterschied macht, ob eine phänotypisch gesunde Person heterozygot ist, also den Genotyp Aa bzw. XAXa besitzt oder homozygot ist, also den Genotyp AA bzw. XAXA besitzt. Lange Zeit gab es keine Möglichkeit (außer in bestimmten Fällen über Stammbaum-Betrachtungen) zu testen, ob eine Person heterozygot ist. Inzwischen gibt es für einige Krankheiten gentechnische Nachweis-Methoden.
Ein schon etwas älterer "Heterozygoten-Test" nutzt eher die Prozesse im Stoffwechsel von Menschen aus.

  • Lest auf S. 108 den Text über Phenylketonurie (PKU) (1. Absatz link + 2. und 3. Absatz rechts) und auf der S. 109 den Abs. 5 (rechte Spalte)
  • Betrachtet anschließend das folgende Bild und beschreibt es mit eurem soeben erworbenen Fachwissen. Sprecht dabei laut! Am besten ihr holt euch jemanden dazu, der gerade Zeit hat, z.B. eure Eltern, die sich bestimmt wahnsinnig freuen werden! Wenn ihr das nicht möchtet, dann erzählt es wenigstens einem Gegenstand auf eurem Schreibtisch, laut!

PKU VglGesundKrank Schema.jpg




Optional (= freiwillig)
  • Recherchiert Lebensmittel, die viel bzw. kaum Phenylalanin enthalten!


Der Heterozygoten-Test
  • Im Buchtext wurde bereits der Genotyp Aa angesprochen. Zeichnet diesen Fall nach dem gleichen Schema wie auf der Folie oben!


Der Heterozygoten-Test auf Phenylketonurie wird bei nahezu allen Neugeborenen durchgeführt und kann nach folgendem Muster erfolgen (heutzutage macht man das allerdings anders): Man spritzt einer Person Phenylalanin und misst im Anschluss regelmäßig den Tyrosin-Gehalt im Blut.

  • Zeichne ein Diagramm, das die Tyrosin-Konzentration im Blut nach der Gabe von Phenylalanin in Abhängigkeit von der Zeit zeigt. Einmal für den Fall, dass die betroffene Person den Genotyp AA besitzt und mit einer zweiten Kurve den Genotyp aa.

  • Zeichne in das Diagramm nun den Verlauf ein, der sich ergeben sollte, wenn die betrachtete Person heterozygot (Genotyp Aa) ist.

Ende der ersten Stunde. Kurze Pause :) - Die zweite Hälfte wird kürzer.


Pränatale Diagnose
Auch wenn eine Frau bereits schwanger ist, können Diagnosen über das ungeborene Kind gestellt werden. Die dazu zur Verfügung stehenden Methoden nennt man pränatale Diagnosemöglichkeiten (prä = vor, natal = Geburt; also vorgeburtliche Diagnosen). Im Buch sind die Verfahren nur sehr grob dargestellt (S. 110, untere Tabelle). Zur Bearbeitung von Aufgaben in der Klausur bzw. Abitur genügt es jedoch, wenn ihr die Inhalte dieser Tabelle wiedergeben könnt.


Optional (= freiwillig)
  • Eine detailliertere Übersicht über Pränatale Diagnostik bietet z.B. diese Seite: Familienplanung.de


Nicht immer gilt: Ein Gen - ein Merkmal

Zu Beginn der Vererbungslehre haben wir einfach Fälle betrachtet. Zum Beispiel bei Erbsen: Die Farbe der Samen wurde von einem Gen bestimmt. Je nachdem welche Allelkombination vorlag, waren die Früchte gelb oder grün. Ähnlich war es bei den Farben der Blüten oder der Oberflächenbeschaffenheit der Samen (rund oder runzelig). Dieser Zusammenhang gilt jedoch nicht streng. Folgende Effekte treten auf:

  • Polyphänie: Ein Gen sorgt nicht nur für die Ausprägung eines Merkmals am Körper, sondern es werden gleich ganz viele Merkmale beeinflusst. Bsp.: Das Marfan-Syndrom. Ein einziges defekten Allel sorgt hier für eine ganze Reihe von Veränderungen: Herzfehler, Augenfehler, Verlängerung der Gliedmaßen etc.
  • Polygenie: Ein Merkmal wird von vielen Genen beeinflusst. Bsp.: Die Hautfarbe. Es gibt nicht ein Gen, welches die Hautfarbe bestimmt, sondern viele. Damit kann man sehr gut erklären, warum Menschen nicht einfach weiß, schwarz oder braun sind, sondern sehr viele Zwischenstufen denkbar sind.
  • Modifikation: Ein Merkmal wird nicht (nur) von den Genen bestimmt, sondern ein Umweltfaktor sorgt für die Veränderung des Merkmals. Bsp.: Auch hier könnte man die Hautfarbe anführen. Jeder weiß, dass die Haut dunkler wird, wenn man sie der Sonne aussetzt. Der Umweltfaktor "Sonne" sorgt hier also für eine Veränderung des Merkmals "Hautfarbe".
  • Lest S. 100 und bearbeitet die Aufgabe 2 und Aufgabe 4!


Optional (= freiwillig)
  • Zur Vererbung der Hautfarbe: Recherchiert die Zwillinge Leo und Ryan.


Hausaufgabe

Beendet jetzt die Arbeit in Biologie und macht erst etwas anderes, geht... spielen?! Lest zu einem späteren Zeitpunkt die S. 100, 108-109 und bearbeitet die unten stehenden Aufgaben. Der Hefteintrag wurde bereits hochgeladen.

Wie schon erwähnt, werden heutzutage oft genetische Tests herangezogen werden, um Aussagen über mögliche Veranlagungen zu machen. Die Tests sind in den letzten Jahren immer billiger und genauer geworden.

  • Lest auf der S. 109 den Abs. 3 über Chorea Huntington!
  • Fasst die (eher ethischen) Probleme solcher Tests in diesem speziellen Fall zusammen!

Rosafarbene Hortensien (das sind Pflanzen. Wenn ihr die nicht kennt: Hier klicken) können mit einem einfachen Trick "umgefärbt" werden.

  • Recherchiert eine Methode, rosafarbene Hortensien blau zu färben!
  • Was hat das mit der letzten Unterrichtseinheit zu tun?


Distanzunterricht Dienstag, 26.01.

Verbessert gegenseitig eure Hausaufgabe:

  • Findet einen Partner, mit dem ihr zusammenarbeiten wollt. Wenn ihr keinen findet, könnt ihr eure Hausaufgabe auch alleine verbessern.
  • Besorgt euch einen Rotstift!
  • Macht ein Foto von eurer Hausaufgabe (Aufgabe 10 und Aufgabe 12 auf dem AB) und schickt sie an eure Korrekturpartnerin bzw. eurem Korrekturpartner!
  • Druckt dann die Lösungen, die ihr jetzt erhalten habt aus (wenn ihr euch selbst korrigiert ist das natürlich nicht nötig)
  • Solltet ihr keinen Drucker haben, könnt ihr das Foto auch in z.B. Powerpoint einfügen und dann mit dem Mauszeiger etwas hineinmalen.
  • Geht zunächst auf dieser Seite Schritt für Schritt die Musterlösung durch und vergleicht mit der Lösung, die vor euch liegt. Verbessert mit roter Farbe die Fehler!
  • Schickt eurem Korrekturpartner die Arbeit zurück (z.B. wieder ein Foto davon)
  • Wenn ihr euch nicht selbst korrigiert habt, dürft ihr jetzt in grün die Korrektur korrigieren - sofern die Korrektur falsch ist oder ihr euch ungerecht behandelt fühlt.
  • Ihr erhaltet um 13:50 Uhr einen Arbeitsauftrag über den Schulmanager. Als Antwort auf diesen Arbeitsauftrag schickt ihr mir eure (doppelt) korrigierte Lösung zurück!


Verbesserung der Hausaufgabe

Aufgabe 10: Berechne die Stoffmenge an Schwefeltrioxid, die man benötigt, um mit 100g Wasser vollständig zur Schwefelsäure zu reagieren.

Tipp 1: Es geht hier um die Stoffmenge und eine Masse ist gegeben. Finde die Gleichung, in der diese beiden Parameter vorkommen und die nützlich sein könnte!



Tipp 2: Direkt lässt sich die Stoffmenge von Schwefeltrioxid mit dieser Gleichung nicht berechnen. Das geht nur, wenn alle anderen Größen der Gleichung bekannt wären, aber die Masse von Schwefeltrioxid ist unbekannt. Über die chemische Gleichung kann man die Stoffmenge von Schwefeltrioxid jedoch mit der Stoffmenge des Wassers in Beziehung setzen: Wie verhält sich die Stoffmenge (also die Anzahl der Teilchen) von Schwefeltrioxid zu der Stoffmenge (also der Anzahl der Teilchen) von Wasser?



Tipp 3: Die Stoffmenge des Schwefeltrioxids lässt sich also durch die Stoffmenge des Wassers ausdrücken. Und die kann berechnet werden! Denn von Wasser hat man die Masse gegeben. Berechne zunächst die Stoffmenge des Wassers und schließe dann die Aufgabe ab!



Aufgabe 12: Im Labor soll Ammoniak aus den Elementen hergestellte werden (also aus H2 und N2). Es gibt noch exakt 22,4L Stickstoff. Welche Stoffmenge an Wasserstoff benötigt man, um den gesamten Stickstoff zu Ammoniak umzusetzen.

Tipp 1: Es geht hier um die Stoffmenge. Darüber hinaus ist ein Volumen gegeben. Finde die Gleichung, in der diese beiden Parameter vorkommen und die nützlich sein könnte!



Tipp 2: Direkt lässt sich die Stoffmenge von Wasserstoff mit dieser Gleichung nicht berechnen, es fehlt das Volumen, V(H2). Aber wie immer kann über die chemische Gleichung die Stoffmengen der beteiligten Stoffe in Beziehung zueinander setzen. Stelle die chemische Gleichung auf und drücke dann die Stoffmenge des benötigten Wasserstoffs in der Stoffmenge des Stickstoffs aus!



Tipp 3: Jetzt kann die Stoffmenge des Stickstoffs ausgerechnet werden und daraus die Stoffmenge des benötigten Wasserstoffs!




Distanzunterricht Dienstag, 26.01.

Die folgende Einheit soll auf das chemische Reaktionsverhalten von Alkoholen hinführen. Dazu ist eine Wiederholung von Unterrichtsstoff aus dem letzten Schuljahr nötig: Die Redoxreaktionen. Das folgende Video wiederholt alles, was für die folgenden Stunden wichtig ist. Es ist sehr ausführlich und schreitet langsam voran. Wahrscheinlich werden sich einige von euch langweilen. Aber auch diejenigen unter euch, die letztes Jahr unter Umständen große Probleme beim Aufstellen von Redoxgleichungen hatten: Das Video erklärt wirklich jeden einzelnen Schritt, den man machen muss. Das Video dauert fast 30min. Danach sollt ihr selbst weitere Aufgaben lösen. Dazu benötigt ihr ein Arbeitsblatt, welches ihr am besten schon vor dem Anschauen des Videos ausdruckt oder in einem separaten Fenster öffnet


Redoxreaktionen: Wiederholung


Nachdem ihr das Video geschaut habt, geht zur nächsten Aufgabe auf dem Arbeitsblatt über:
Die Reaktion von Permanganat (MnO4-) in basischer Sulfit-Lsg. zum grünen Manganat MnO42-. Im Video war häufiger zwar die Rede von gründen Mn6+-Ionen, es ist jedoch fachwissenschaftlich besser von MnO42- zu sprechen. Am Verfahren ändert sich dadurch nicht, nur das Ergebnis sieht anders aus.
Ich empfehle übrigens, dass ihr diese Aufgaben am besten mit einem Partner besprecht! - Ruft euch über ein Medium eurer Wahl zu einer kleinen Gruppen (2 - 4 Personen) zusammen und löst die folgende Aufgabe zusammen! Die letzte Aufgabe könnt ihr dann zur Überprüfung eurer Fähigkeiten alleine rechnen.

  • Schritt 1: Redoxpaare und Oxidationszahlen festlegen

  • Schritt 2: geflossene Elektronen festlegen

  • Schritt 3: Ladungsausgleich

  • Schritt 4: Stoffausgleich mit H2O

  • Schritt 5: Gesamtgleichung aufstellen


In der nächsten Aufgabe geht es um die Bildung von braunem MnO2 in basischer Sulfit-Lsg. Wenn das Medium weder sauer noch basisch ist, dürft ihr euch entscheiden, mit welchen Ionen ihr den Stoffausgleich durchführt: entweder mit OH-- oder mit H3O+-Ionen.
Stellt zunächst die Redoxgleichung auf, indem ihr die H3O+-Ionen zum Ausgleichen verwendet!



Letzte Aufgabe: Betrachtet noch einmal die Bildung von braunem MnO2 in basischer Sulfit-Lsg. Verwendet diesmal aber zum Ausgleichen die OH--Ionen!<br



In eurem Schulbuch beginnt das Thema sofort mit Redoxreaktionen bei Alkoholen. Mir war es aber wichtig, dass ihr zunächst die Grundlagen anhand von anorganischen Molekülen wieder auffrischt. Eine Hausaufgabe im Buch gibt es daher nicht, ihr solltet aber tatsächlich die Aufgaben auf dem AB beherrschen!


Distanzunterricht Donnerstag 20.01. Chemie

Mit der folgenden Einheit möchte ich in ein neues Stoffgebiet einsteigen. Schaut das folgende Video (17min.). Dort wird zunächst ein Versuch vorgestellt und die Beobachtung dann erklärt. Am Ende wird euch eine Aufgabe gestellt. Diese Aufgabe erledigt ihr bitte sofort im Anschluss an das Video. Dazu braucht ihr entweder ein Periodensystem oder ihr recherchiert die nötigen Infos direkt im Netz. Eure Lösung schickt ihr bitte in Form eines Fotos als Antwort auf den Arbeitsauftrag, den ich euch morgen um 08:10 Uhr über den Schulmanager anzeigen lasse.
Am Freitag machen wird eine Videokonferenz über MS Teams, um eure Ergebnisse sowohl in Bio als auch Chemie zu besprechen. Viel Erfolg!

Die polare Atombindung



Distanzunterricht Mittwoch, 19.01.

Ihr habt gestern sehr gut mitgearbeitet, daher heute eine etwas weniger anspruchsvolle Stunde. Mit dem folgenden Link gelangt ihr auf eine Seite von BR alpha (Ein TV-Sender, der zum Bayerischen Rundfunk gehört):

Trinkalkohol

Diese Seite besitzt sieben Unterkapitel, die ihr dort auf der rechten Seite der Homepage anklicken könnt:
1. Alkoholische Gärung in der Brauerei
2. Die alkoholische Gärung im Labor
3. Was macht Ethanol zu einem Alkohol
usw.
Zu jedem Kapitel gibt es einen kurzen Film (insgesamt ca. 35 Minuten) und darunter ein Quiz. Ich vertraue darauf, dass ich ihr euch heute alleine mit dieser Seite 45 Minuten beschäftigen könnt. Wer noch eine etwas anspruchsvollere Aufgabe braucht, bearbeitet bitte die folgende Aufgabe (Kontrolle in der nächsten Stunde am Di, 26.01.): pdf-Datei

Distanzunterricht Montag, 18.01.

Hallo 10d!
In der letzten Woche kam es vor allem in der 1. Stunde zu Problemen bei manchen Videokonferenzen. Höchstwahrscheinlich ist der Server überlastet, an dem Problem wird gearbeitet. Solange verzichte ich auf die Videokonferenz in der 1. Stunde, ich kann mit euch ja auch in der zweiten Stunde sprechen. Der Zeitplan für heute sieht also so aus:

  • Um 07:50 Uhr solltet ihr einen Arbeitsauftrag über den Schulmanager erhalten haben, auf den ihr bis spätestens 08:15 Uhr antwortet. Das dient zunächst als Anwesenheitskontrolle. Erhalte ich keine Rückmeldung von euch, melde ich euch im Sekretariat als fehlend (was vermutlich dazu führt, dass eure Eltern informiert werden).
  • Ihr arbeitet bis 09:00 Uhr alleine an diesem Arbeitsauftrag
  • Dann starte ich eine BBB-Konferenz und wir besprechen, was ihr hier geschafft habt.

Für diesen Arbeitsauftrag benötigt ihr euer Buch und einen Zettel mit Stift.

Wiederholung von letzter Stunde

In der letzten Stunde habt ihr die Stoffklasse der Alkohole kennengelernt. Überlegt noch einmal, welches Strukturmerkmal bei allen Stoffen dieser Klasse gleich ist!



Diese funktionelle Gruppe im Molekül hat Auswirkungen auf die physikalischen Eigenschaften. Vergleicht die beiden Stoffe Propan-1-ol und Butan hinsichtlich ihrer Siedepunkte und begründet die Unterschiede so genau wie möglich! - Ihr müsst die Lösung zu dieser Aufgabe nicht ausführlich hinschreiben, aber notiert Stichpunkte, die ihr in einer Schulaufgaben-Situation genauer ausführen würdet. Eine solche Aufgabe könnte in einer schriftlichen Arbeit - je nachdem in welchem Zusammenhang sie gestellt wird - 10 BE oder mehr wert sein.



Ihr könnt hier einen Hefteintrag zu der letzten Einheit herunterladen, den ihr entweder abschreibt oder ausdruckt und in euer Heft klebt: pdf-Datei


Neu: Benennung von Alkoholen

Die Benennung von Alkoholen ist relativ simpel. Lest daher zunächst die S. 81 in eurem Buch und bearbeitet dann die Aufgaben 1 - 3! (Den kleinen Absatz links unten "Abgrenzung zwischen Stellung und Wertigkeit" lasst ihr bitte weg.)










Es gibt verschiedene Alkohol-Typen

Betrachtet die folgenden Alkohole und deren Siedepunkte. Benennt zunächst die Alkohole! Stellt dann eine Hypothese auf, welche die unterschiedlichen Siedepunkte erklären könnte! Die Masse aller vier Alkohole ist gleich, außerdem sind es Konstitutionsisomere (gleiche Bausteine nur anders zusammengesetzt), daher ist es (bei eurem aktuellen Wissensstand) evtl. verwunderlich, warum sich die Siedepunkte überhaupt unterscheiden.
DivAlkTypen primsekter.jpg







Noch ein Punkt: Je nachdem mit wie vielen C-Atomen das C-Atom, an dem die OH-Gruppe hängt, verbunden ist, spricht man von primären, sekundären oder tertiären Alkoholen. Ordne diese Begriffe den vier abgebildeten Molekülen zu und formuliere eine Aussage, in der ein Zusammenhang dieser Begriffe mit dem Siedepunkt hergestellt wird!




Die Erlenmeyer-Regel

Ihr habt beim Einüben der Benennung von Alkoholen bereits gesehen, dass es Moleküle gibt, die mehr als eine Hydroxy-Gruppe enthalten. Was jedoch so gut wie nie vorkommt, sind Moleküle, bei denen zwei Hydroxygruppen an einem C-Atom hängen. Das folgende Bild stellt beispielhaft dar, was mit solchen Molekülen spontan passieren würde. Beschreibe das Bild mit eigenen Worten! (Und zwar wirklich, nicht nur in Gedanken. Sprich es laut aus!)
ErlenmeyerRegel.jpg



Dieses Phänomen ist unter dem Namen Erlenmeyer-Regel bekannt. Ihr kennt den Namen sicher von dem Glasgefäß "Erlenmeyerkolben".
E. Erlenmeyer ca 1863.jpg

Freiwillig: Lest den Wikipedia-Eintrag über Emil Erlenmeyer: [Hier klicken]


Verwendungsmöglichkeiten von Alkoholen

Aufgrund der polaren Hydroxygruppe eignen sich Alkohole für viele Dinge, für die Alkane nicht brauchbar sind. Lest im Buch die S. 78 - 79 und notiert euch zu jeder fett gedruckten Überschrift einen Satz, der die dort beschriebenen Inhalte zusammenfasst. Solltet ihr das vor 09:00 Uhr geschafft haben, habt ihr kurz Pause. Um 09:00 Uhr wählt euch bitte in die Videokonferenz ein über den Link, den ich euch im Schulmanager geschickt habe.



Hefteintrag und Hausaufgabe
  • Der zu dieser Einheit passende Hefteintrag kann hier heruntergeladen werden: pdf-Datei. Bitte abschreiben oder ausdrucken und ins Heft kleben.
  • Lest bis morgen im Buch zur Wiederholung die S. 80, 82 und neu: S. 84



Distanzunterricht Montag, 18.01.

Hallo 9a!
In der heutigen Einheit sollt ihr eine weitere Einteilungsmöglichkeit von chemischen Reaktionen kennenlernen und im Anschluss die neuen Begriff anhand einiger Beispiele einüben. Am Freitag würde ich gerne eine Videokonferenz mit euch durchführen, um die letzten drei Einheiten mit euch live zu besprechen.

Drei Grundtypen chemischer Reaktionen

Im folgenden Video (3:28min) werden drei Grundtypen chemischer Reaktionen theoretisch vorgestellt. Prägt euch die Begriffe ein, im Anschluss sollt ihr sie anwenden!



Aufgaben: Stellt für die folgenden Reaktionen die chemische Gleichung auf. Gebt an, ob es sich um eine Synthese, Analyse oder Umsetzung handelt und entscheidet, ob es eine exotherme oder endotherme Reaktion ist!

  • Eisenpulver und Schwefelpulver wird vermischt. Man taucht einen glühenden Nagel kurz in das Gemisch und es beginnt eine starke Reaktion. Nach und nach glüht das gesamte Gemisch auf. Am Ende liegt der Stoff Pyrit (FeS2) vor.


  • Quecksilberoxid (HgO) wird in einem Reagenzglas mit dem Bunsenbrenner stark erhitzt. Solange sich das RG in der BB-Flamme befindet, strömt Sauerstoff aus dem RG und es bilden sich am Rand kleine Quecksilbertröpfchen


  • In einem RG befinden sich Wasser und ein Stück Magnesium-Band. Am oberen Ende ist das RG mit einem Stopfen verschlossen, in dem ein dünnes Glasrohr steckt. Das Wasser im RG wird vorsichtig erhitzt, so dass es verdampft und alle anderen Gase aus dem RG verbrennt. Es liegt also ein Stück Magensiumband in gasförmigem Wasser vor. Entzünden man das Magnesiumband dann an einer Stelle, reagiert es mit dem Wasser. Sobald die Reaktion gestartet ist, reagiert das gesamte Magnesiumband nach und nach auf der gesamten Länge unter Freisetzung großer Mengen von Licht und Wärme. Nach der Reaktion bleibt der der Stoff Magnesiumoxid (MgO) im RG übrig und während der Reaktion kann man zeigen, dass aus dem dünnen Glasrohr im Stopfen Wasserstoff entweicht.


Nachdem nicht klar ist, wann jemals wieder normaler Unterricht stattfindet, hier ein paar Videos, in denen ihr die chemischen Reaktionen dieser Einheit sehen könnt:
Ein relativ ausführliches Video zur Synthese von Eisensulfid (Pyrit):



Die Thermolyse von Quecksilberoxid:



Die Umsetzung von Magnesium in Wasserdampf (mit lustiger Musik... YEAH!):



Hausaufgabe (könnt ihr auch sofort erledigen):

  • Ladet den Hefteintrag herunter. Schreibt ihn bitte entweder ab oder druckt ihn aus und klebt ihn in euer Heft: pdf-Datei
  • Lest im Buch, S. 34
  • Sucht das Arbeitsblatt heraus, auf dem wir das Aufstellen chemischer Gleichungen geübt haben. Falls ihr es nicht findet, kann es hier noch einmal heruntergeladen werden: pdf-Datei. Entscheidet, ob es sich bei den Reaktionen 1, 3, 5 und 7 auf der Vorderseite (links) und den Reaktionen 3, 8 und 10 auf der Rückseite (rechts) um eine Synthese, Analyse oder Umsetzung handelt. Falls die Beschreibung es zulässt, könnt ihr auch angeben, ob es eine exo- oder endotherme Reaktion ist und wenn ihr die chemische Gleichung noch nicht aufgestellt habt, dann holt das bitte nach!


Wir hören uns am Freitag, Link zur Konferenz kommt über den Schulmanager!


Distanzunterricht Montag, 18.01.

In den vorangegangenen Einheiten habt ihr einen historischen Einblick in die Probleme erhalten, die sich beim Arbeiten mit der Masse von Stoffportionen ergeben. Für die weiteren Einheiten sind diese historischen Aspekte erst einmal weniger interessant. Wir wollen in den nächsten Einheiten eher dahin kommen, dass in der Lage seid, z.B. folgende Aufgaben zu lösen:

"Ein Auto verbraucht pro hundert gefahrene Kilometer im Durchschnitt 5,0L Benzin. Wie viel Gramm Kohlenstoffdioxid wird auf diesem Weg ausgestoßen."

Bis dahin müssen jedoch noch einige Dinge geklärt werden und wir fangen heute erst einmal mit kleinen Schritten an. Ihr benötigt für diese Einheit einen Stift, Zettel und euer Buch!

Wiederholung: Die Bestimmung der absoluten Atommasse

Ihr solltet in der letzten Einheit bemerkt haben, dass die "frühen Chemiker" sehr daran interessiert waren, die Masse von einzelnen Atomen zu bestimmen. Diese Atommasse spielt eine wichtige Rolle bei der Berechnung von Mengeneinheiten, um chemische Reaktionen vollständig durchführen zu können. Nachdem es keine Waage gab, mit der man so kleine Massen bestimmen konnte, behalf man sich mit einer willkürlichen Größe: Die atomare Masseneinheit u wurde eingeführt. Man wusste zwar nicht, wie viel Gramm ein Teilchen wog, welches 1u schwer war, aber man konnte bestimmen wie viel u z.B. ein Sauerstoffatom und wie viel u ein Wasserstoffatom wog. So konnte man die Atome von unterschiedlichen Elementen vergleichen.
Mit Hilfe von Massenspektrometern gelang es irgendwann, für die atomare Masseneinheit u einen Wert in Gramm zu bestimmen, es gilt:

1u = 1,66 x 10-24g

Damit lassen sich nun schon ein paar einfache Aufgaben rechnen. Um zu unterscheiden, ob man von der Masse eines Teilchens in g oder der atomaren Masseneinheit in u spricht, gibt es die zwei Variablen m(X) für die "normale" Masse und ma(X) für die atomare Masseneinheit. X steht dabei für die Teilchen, das man betrachtet. Die folgenden Ausdrücke bedeuten dann folgendes:

m(O-Atom) = 2,658 x 10-23g.



ma(C-Atom) = 12,0u



Test:
Schreibe als mathematische Gleichung: Misst man die Masse eines Bor-Atoms in atomaren Masseneinheiten, so erhält man 10,811u.


Schreibe als mathematische Gleichung: Die Masse eines Sauerstoff-Moleküls (!) beträgt 5,313 x 10-23 Gramm



Mit Hilfe des oben beschriebenen Zusammenhangs zwischen der Masse in g und der atomaren Masseneinheit in u lassen sich die beiden Größen auch leicht ineinander umwandeln:

Umrechnung ma m.jpg

Berechne die Masse eines Sauerstoffmoleküls in u! (Die Masse in Gramm ist oben bereits angegeben)



Nachdem ein unbekannter Stoff X im Massenspektrometer untersucht wurde, konnte die Masse eines Teilchens dieses Stoffes auf 4,79 x 10-22g bestimmt werden. Rechne diesen Wert in atomare Masseneinheiten um!



Man sollte meinen, nachdem man jetzt die atomare Masseneinheit auch in Gramm bestimmen kann, ist die Angabe in u doch nicht mehr nötig. Es war doch nur eine Hilfsgröße, solange man das Gewicht von Atomen noch nicht direkt bestimmen konnte. Die Einheit hat sich aber gehalten, denn sie ist (unter anderem) in folgendem Punkt ganz praktisch: Sie lässt sich einfacher schreiben! Nehmt an, ihr habt ein Molekül "XYZ", für das gilt: ma(XYZ) = 212,3u und m(XYZ) = 3,5 x 10-24g.
Versucht beide Angaben in einem Word-Dokument zu schreiben! Das geht mit der atomaren Masseneinheit sehr leicht, mit der "normalen" Masse tut man sich deutlich schwerer. Dieses "Zehn hoch irgendwas" ist einfach umständlich.




Molekül- und Formelmassen

Wenn ihr eure Hausaufgabe gemacht habt und das Buch auf den Seiten 34 - 35 gelesen habt, dann wisst ihr schon, dass man die Masse von Molekülen oder die Formelmasse von Salzen, gemessen in der atomaren Masseneinheit u, ganz einfach bestimmen kann, indem man die Masseneinheiten der einzelnen Atome, die am Aufbau des Moleküls oder der Formelmasse beteiligt sind, zusammenzählt. Bsp.: Möchte man die Masse eines Schwefelsäure-Moleküls (H2SO4) wissen (in u), dann addiert man einfach die Masseneinheiten der am Aufbau beteiligten Atome, also: 2 x ma(H) + ma(S) + 4 x ma(O).
Ma H2SO4 Berechnung.jpg

Das leuchtet vermutlich den meisten ein, aber die große Frage ist doch: Woher weiß man die Werte für die einzelnen Atome? - Sie stehen im Periodensystem! Nehmt das Periodensystem im Buch auf der letzten Seite zur Hand. Ihr erkennt im oberen weißen Feld "Erklärungen", dass die Zahl links oberhalb des Elementsymbols die Atommasse in u angibt.
Berechnet nun mit Hilfe des PSEs die Molekülmassen (in u) von:

  • Adrenalin (ein Hormon, welches euer Körper in stressigen Situationen ausschüttet), chem. Formel: C9H13NO3
  • Koffein (ein Stoff in Kaffee oder Cola, der anregend wirkt), chem. Formel: C8H10N4O2
  • Indigo (ein Stoff zum Färben von Jeans), chem. Formel: C16H10N2O2


Das Mol

Mit dem nun verfügbaren Atomgewicht könnte man theoretisch schon arbeiten. Betrachten wir noch einmal das Beispiel aus der letzten Einheit. Es ging um die chemische Reaktion: Eisen reagiert mit Schwefel zu Pyrit:

Fe + 2 S --> FeS2

Diese chemische Gleichung sagt aus, dass man doppelt so viele Schwefel-Atome wie Eisenatome braucht, damit alles miteinander reagiert und nichts übrig bleibt. Angenommen ihr habt einen Teelöffel voll Eisenpulver und wollte exakt die Menge Schwefel dazugeben, die nötig ist, um alles vollständig in Pyrit umzuwandeln. Dann könnte man jetzt die Portion Eisen wiegen, mit Hilfe der Atommasse von Eisen ausrechnen, wie viele Atome das sind. Diese Anzahl verdoppeln und dann ausrechnen, welche Masse diese Anzahl an Schwefelatomen hat. Diese Menge könnte man dann abwiegen. Das folgende Bild veranschaulicht den Rechenweg:
FeS2BerechnungohneMol.jpg
Das wirkt noch etwas umständlich...
Bei dieser Berechnung tauchen nämlich wieder sehr große, unhandliche Zahlen auf: Die Anzahl der Teilchen. Diese wird in der Chemie mit einem N(X) gekennzeichnet. Also z.B. kann man den Satz: "In meinem Zimmer liegen 3208 Legosteine auf dem Boden mathematisch so formulieren:

N(Legosteine) = 3208

Weil Atome so klein sind, befinden sich in den 6,0g Eisen einfach unglaublich viele Atome: Die Anzahl beträgt N(Fe) = 6,47 x 1022. Eine Zahl mit dreiundzwanzig Stellen (!), in Worten also ungefähr 600 Trilliarden Atome...
Daher hat man sich etwas einfacheres ausgedacht: Man betrachtet einfach eine sehr große Menge an Teilchen und gibt dieser Anzahl einen bestimmten Namen. Das ist nicht so ungewöhnlich, wie es vielleicht im ersten Moment klingt. Ihr kennt z.B. sicher den Ausdruck "ein Dutzend" für die Anzahl 12. (Wo jetzt genau der Sinn darin liegt zu sagen, "Ich hole beim Bauern ein Dutzend Eier" anstatt "Ich hole beim Bauern zwölf Eier", kann ich euch auch nicht genau sagen. Aber das Phänomen gibt es eben. Fragt mal eure Oma ob sie den Begriff "Schock" noch kennt, für eine Anzahl an z.B. Eiern).
In der Chemie hat man nun den Begriff "Mol" eingeführt. Das ist die Bezeichnung für eine bestimmte Anzahl an Teilchen, nämlich 6,022 x 1023. Man nennt diesen Wert auch Avogadro-Konstante NA = 6,022 x 1023 1/mol

Freiwilliger Test:

  • Besorgt euch eine Stoppuhr oder ruft die Funktion auf eurem Handy auf!
  • Stoppt die Zeit, die ihr benötigt, um zehn mal "Sechs Komma null zwei zwei mal zehn hoch dreiundzwanzig" zu sagen!
  • Stoppt die Zeit, die ihr benötigt, um zehn mal "Ein Mol" zu sagen!

Ergebnis? - Seht ihr, die Einheit "Mol" ist eben praktisch.
Warum jetzt ausgerechnet 6,022 x 1023? - Das ist genialer Schachzug der Chemiker gewesen. Diese Zahl wurde deshalb gewählt, weil dann die im PSE angegebene atomare Masseneinheit genau übereinstimmt mit der Masse in g, die ein Mol dieser Teilchen wiegt.
Nochmal langsam, zum mitschreiben: Die Zahl, die oben links bei den Elementsymbolen im PSE steht, gibt also nicht nur die Masse eines Atoms dieses Elements in u an, sondern gleichzeitig entspricht dieser Wert der Masse in g von einem Mol dieser Atome. - Wahnsinn! Diese Chemiker..., das sind vielleicht Teufelskerle!
Und jetzt wieder ernst: Diese Größe, also die Masse, die ein Mol eines Stoffes in g wiegt, nennt man Molare Masse M(X). Ein Beispiel: "Die molare Masse von Wasser, also diejenige Masse in Gramm, die ein Mol Wassermoleküle wiegen, beträgt 18g/mol." oder in Form einer mathematischen Gleichung: M(H2O) = 18g/mol.
Die Variable, um eine Anzahl in Mol zu messen, nennt man "Stoffmenge", sie wird mit einem kleinen n(X) gekennzeichnet, die Einheit Mol wird abgekürzt mit mol. Wenn man also sagen möchte: "Ich habe heute 2 Mol Erdbeeren gepflückt, dann kann man das so formulieren:
n(Erdbeeren) = 2mol (Dieser Wert ist völlig unrealistisch. So viele Erdbeeren gibt es auf der ganzen Welt nicht)

Test:
Wie spricht man die folgende Gleichung aus: n(Sterne im Universum) = 0,1mol (Dieser Wert stimmt ungefähr)? Wie viele Sterne sind das?


Schreibe als mathematische Gleichung: In der Sahara gibt es ungefähr Null Komma eins Mol Sandkörner.



Einfache Aufgaben

  • Es liegen 14,007g Stickstoffatome vor. Wie viel Mol sind das?
  • Wie viel Gramm wiegen 2 Mol Kohlenstoffatome?
  • Im Jahr 2018 wurden grob geschätzt 4 x 1011 Äpfel auf der ganzen Welt geerntet. Wie viel Mol sind das?


Systematische Zusammenfassung

Die einfachen Berechnungen in den oberen Kästen waren mehr so... "freestyle". Viele von euch werden die Aufgaben relativ problemlos lösen können. Manche brauchen aber vielleicht etwas mehr Struktur. Diesen Personen empfehle ich das Buch (S. 35 - 38), die Hefteinträge (s. u.) und ganz knapp zusammengefasst die folgende Übersicht, die die bisher besprochenen Größen und ein paar Gleichungen zum Umrechnen enthält:
Übersicht Größen1.jpg

Hausaufgabe: Auch wenn ihr zu der Gruppe gehört, die glaubt, bereits alles verstanden zu haben, lest ihr bitte als Hausaufgabe im Buch die folgenden Absätze und die Hefteinträge. Die Datei mit den Hefteinträgen haltet ihr bitte morgen Nachmittag bereit (z.B. geöffnet in einem Fenster auf dem PC, an dem ihr arbeitet). Wir machen eine Videokonferenz, besprechen noch einmal alles und lösen dann die in der pdf-Datei enthaltenen Aufgaben!

  • Die Teilchenzahl (S. 36)
  • Die Stoffmenge (S. 36-37)
  • Teilchenzahl und Stoffmenge (S. 37)
  • Teilchenzahl und Masse (S. 37)
  • Molare Masse und molares Volumen (S. 38)
  • Die molare Masse (S. 38)
  • Hefteinträge zu dieser und letzter Stunde (Punkt 4 wurde noch nicht besprochen): pdf-Datei


Distanzunterricht Donnerstag, 14.01. Chemie

Um 08:15 Uhr findet die BBB-Konferenz statt, um die Anwesenheit zu kontrollieren. Bis dahin macht ihr ab 08:00 Uhr bitte folgendes:
Scrollt auf dieser Seite nach unten bis zum Abschnitt "Distanzlernen für Donnerstag, 17.12.". Wiederholt die dort gestellte Aufgabe im ersten lilafarbenen Block "Bindungsarten". Das sollte in 15min. zu schaffen sein. Startet dann bitte pünktlich die BBB-Konferenz.
Nach der Anwesenheitskontrolle bearbeitet ihr bitte die folgenden Aufgaben alleine. Sollte BBB stabil laufen, können wir das gerne in Form von Gruppenarbeiten mit anschließender Besprechung durchführen. Sollte die Verbindung schlecht sein oder abbrechen, könnt ihr die Aufgaben hier auch alleine bearbeiten. Wechselt um 08:45 Uhr auf jeden Fall zum Biologie-Auftrag!


Wiederholungsaufgaben zu den verschiedenen Bindungstypen

Aufgaben:

  • Salze 1

Formuliere die chemische Gleichung zur Bildung von Natriumoxid aus den Elementen







  • Salze 2

Begründe, warum Salze in der Regel einen sehr hohen Siedepunkt haben, Moleküle eher niedrigere!



  • Moleküle

Zeichnet die Valenzstrichformeln für: CO2, NH3, CH2O, SO3

  • Metalle

Begründe, warum Metalle in der Regel sehr gute elektrische Leiter sind!

Fertig für heute. Wenn ihr Schwierigkeiten bei diesen Aufgaben hattet, findet ihr Überblicksseiten zu den Stoffklassen in eurem Buch Galvani - Chemie S1 auf den S. 102-103, 120-121 und 132,133

Distanzunterricht Freitag, 15.01. Chemie

Bitte bearbeitet die folgende Einheit am besten in der eigentlichen Unterrichtszeit von 08:45 - 09:30 Uhr. Ihr benötigt das Arbeitsblatt, welches ihr vor den Ferien erhalten habt und auf dem die Vorderseite bereits ausgefüllt ist. Solltet ihr das AB nicht mehr finden, könnt ihr es hier noch einmal herunterladen:
pdf-Datei


Energiebeteiligung bei chemischen Reaktionen

Schaut bitte zunächst das folgende Video. Es enthält eine Zusammenfassung der letzten Einheit und erklärt einen neuen Aspekt. Während des Videos solltet ihr auch das AB auf der Rückseite ausfüllen. Nach dem Video bearbeitet bitte die Aufgaben darunter. Lasst euch die Lösung erst anzeigen, wenn ihr tatsächlich eine gefunden habt!


Aufgaben:
Startet man ein Auto, so wird durch das Umdrehen des Schlüssels etwas Energie aus der Batterie in einen elektrischen Funken im Motor umgewandelt, der vergastes Benzin entzünden. Dabei reagiert das Benzin mit Sauerstoff. Wenn der Motor läuft, könnte man die Batterie auch entfernen.

  • Erkläre, ob es sich bei der Verbrennung von Benzin im Motor eines Autos um einen exothermen oder endothermen Vorgang handelt!
  • Zeichne ein Energie-Reaktionsverlaufs-Diagramm, in dem die wichtigen Begriffe aus dem Text der Grafik richtig zugeordnet sind!






Pflanzen können mit Hilfe von Sonnenlicht aus Kohlenstoffdioxid und Wasser die Stoffe Glukose und Sauerstoff herstellen. Bei manchen Unterwasserpflanzen kann man den entstehenden Sauerstoff sehr schön sehen, da er in Form von Gasbläschen aufsteigt. Das funktioniert allerdings nur solange, wie die Unterwasserpflanze mit Licht bestrahlt wird. Verdunkelt man die Pflanze entstehen auch keine Gasblasen mehr.

  • Erkläre, ob es sich bei der Verbrennung von Benzin im Motor eines Autos um einen exothermen oder endothermen Vorgang handelt!
  • Zeichne ein Energie-Reaktionsverlaufs-Diagramm, in dem die wichtigen Begriffe aus dem Text der Grafik richtig zugeordnet sind!






Als Hausaufgabe lest ihr bitte die Seiten 136 - 137 im Buch und bearbeitet die Aufgabe 3 auf der Seite 137: Findet sowohl drei weitere Beispiele für exotherme als auch drei Beispiele für endotherme Reaktionen! Ihr erhaltet um 10:30 Uhr einen Arbeitsauftrag im Schulmanager. Dort gebt ihr bitte eure Vorschläge ab!

Distanzunterricht Donnerstag, 14.01. Chemie

Um 08:15 Uhr findet die BBB-Konferenz statt, um die Anwesenheit zu kontrollieren. Bis dahin macht ihr ab 08:00 Uhr bitte folgendes:
Scrollt auf dieser Seite nach unten bis zum Abschnitt "Distanzlernen für Donnerstag, 17.12.". Wiederholt die dort gestellte Aufgabe im ersten lilafarbenen Block "Bindungsarten". Das sollte in 15min. zu schaffen sein. Startet dann bitte pünktlich die BBB-Konferenz.
Nach der Anwesenheitskontrolle bearbeitet ihr bitte die folgenden Aufgaben alleine. Sollte BBB stabil laufen, können wir das gerne in Form von Gruppenarbeiten mit anschließender Besprechung durchführen. Sollte die Verbindung schlecht sein oder abbrechen, könnt ihr die Aufgaben hier auch alleine bearbeiten. Wechselt um 08:45 Uhr auf jeden Fall zum Biologie-Auftrag!


Wiederholungsaufgaben zu den verschiedenen Bindungstypen

Aufgaben:

  • Salze 1

Formuliere die chemische Gleichung zur Bildung von Natriumoxid aus den Elementen







  • Salze 2

Begründe, warum Salze in der Regel einen sehr hohen Siedepunkt haben, Moleküle eher niedrigere!



  • Moleküle

Zeichnet die Valenzstrichformeln für: CO2, NH3, CH2O, SO3

  • Metalle

Begründe, warum Metalle in der Regel sehr gute elektrische Leiter sind!

Fertig für heute. Wenn ihr Schwierigkeiten bei diesen Aufgaben hattet, findet ihr Überblicksseiten zu den Stoffklassen in eurem Buch Galvani - Chemie S1 auf den S. 102-103, 120-121 und 132,133

Distanzunterricht Donnerstag, 14.01. Bio

Ökologie

In den letzten Stunden vor den Weihnachtsferien ging es um Prozesse, die sich auf molekularer Ebene abspielen. Ihr habt gesehen, wie in den Mitochondrien energiereiches ATP aus Zucker und Sauerstoff hergestellt wird. Das Thema war im Prinzip abgeschlossen und wir machen einen großen Sprung zur Ökologie.
Das Wort ist euch sicher geläufig, die genaue Bedeutung wahrscheinlich nicht unbedingt. Ihr seht unten zwei Videos, die sich mit Grundbegriffen der Ökologie beschäftigen. Die Videos besitzen eine hohe Informationsdichte und sind unter Umständen etwas schnell. Trotzdem sind sie ganz gut gelungen und bieten vielleicht etwas Abwechslung. Es werde euch hier Ausschnitte abgespielt. Auf yt direkt könnt ihr die Videos aber auch ganz anschauen.
Schaut beide Videos und bearbeitet anschließend die Aufgaben darunter!




Aufgaben:
Klickt zunächst auf folgenden Link. Ihr gelangt zu einer Seite, die "Eco-Spheres" verkauft. Ein angeblich ursprünglich von der NASA entwickeltes "Ökosystem" für den Schreibtisch. Lest die Produktinformationen und kehrt dann wieder hierher zurück!
Zur Eco-Sphere

Aufgaben:

  • Wende die soeben gelernten Fachgriffe an und ordnen ihnen die richtigen Objekte aus der Eco-Sphere zu!
  • Was an der Eco-Sphere ist Biotop, was Biozönose?
  • Welche Organismen sind Produzenten, Konsumenten und Reduzenten?

Es gibt drei Begriff, die eher aus der Physik stammen und die Wechselwirkung von Systemen mit ihrer Umgebung beschreiben:

  • Offene Systeme

Offen bedeutet, dass SOWOHL Energie mit der Umgebung ausgetauscht werden, ALS AUCH Stoffe

  • Geschlossene Systeme

Bei geschlossenen System kann zwar Energie mit der Umgebung ausgetauscht werden, allerdings keine Stoffe

  • Isolierte Systeme

Isolierte System stehen in überhaupt keinem Austausch mit der Umgebung.

Ökosysteme sind in der Regel offene Systeme. Betrachten wir einen See: Ein im See lebender Frosch könnte den See durchaus verlassen und in den angrenzenden Wald hüpfen und dort Kot absetzen. Damit wären Stoffe aus dem See in die Umgebung gelangt. Umgekehrt könnte auch ein Ente von weit her angeflogen können und Fischeier, die an ihrem Gefieder hingen im See hinterlassen. Damit wären Stoffe in den See aus der Umgebung eingetragen worden.
Auch ein Energieaustausch ist möglich: Wenn die Sonne scheint, können die Sonnen strahlen in den See eindringen und ihn aufheizen. Nachts kann diese Wärme z.B. an die Atmosphäre wieder abgegeben werden.
Beurteile begründet, ob die Eco-Sphere tatsächlich ein Öko-System in diesem Sinne ist.



Freiwillig:
Vor einigen Jahren versuchte man mit einer Art Gewächshaus die Erde nachzuahmen, um zu testen, ob man in einem geschlossenen System (z.B. auf dem Mars) als Mensch länger überleben könnte. Das Projekt hieß "Biosphäre 2". Wer möchte, kann einen 7min. Film dazu schauen:



Hausaufgabe:
Lest im Buch S. 62 - 63






Wiederholung

Lasst euch das, was wir gestern (Montag) besprochen haben noch einmal kurz durch den Kopf gehen. Ihr könnt dazu auf dieser Seite etwas nach unten scrollen und die Fragen überfliegen, die im letzten Arbeitsauftrag behandelt wurden.
Wie würdet ihr in höchstens drei Sätzen zusammenfassen, was ihr aus dieser letzten Einheit mitgenommen habt?


Ihr sollt heute einen kleinen Versuch durchführen, mit dem man die Masse von kleinen Teilchen ziemlich genau bestimmen kann, auch wenn man sie nicht direkt wiegt. Mit einzelnen Atomen oder Molekülen könnt ihr natürlich nicht arbeiten, daher nehmen wir andere "kleine Teilchen". Ihr benötigt also:

  • Entweder Reiskörner oder trockene Erbsen oder trockene Linsen oder sonst irgendetwas kleines (Reißnägel, Büroklammern etc.)
  • Eine Küchenwaage
  • Geduld


Die Objekte, die ihr euch aussucht, sollten so klein (und leicht) sein, dass eine Küchenwaage "nichts" anzeigt, wenn man eins dieser Objekte darauf legt. Zählt jetzt so viele Teilchen ab (z.B. 100, evtl. aber auch 1000), dass eure Küchenwaage einen "vernünftigen Wert" anzeigt, ich würde empfehlen so um die 10 Gramm.
Ihr könnt auch umgekehrt vorgehen: Wiegt exakt 10,0g ab und bestimmt dann die in dieser Menge enthaltene Anzahl an Objekten.
Berechnet aus diesen beiden Werten (Anzahl und Gewicht) das Gewicht eines Teilchens. Recherchiert dann im Internet ob ihr einen Wert findet, der euer Ergebnis bestätigt (oder auch widerlegt). Wenn ihr Pflanzenteile genommen habt, dann werdet ihr wahrscheinlich sehr schnell auf Wikipedia fündig. Als Suchtipp kann ich euch auch den Begriff "Tausendkornmasse" empfehlen.

Tragt euer Ergebnis in das Padlet ein. Den Link findet ihr im Arbeitsauftrag des Schulmanagers!



Freiwilliger Versuch

Ein freiwilliger Versuch. Ihr benötigt dazu:

  • ein schmale Glas, in das gerade so ein Teelicht passt
  • ein Teelicht
  • ein größeres Gefäß, z.B. Messbecher
  • ein Geschirrtuch (o.ä.)
  • ein Päckchen Backpulver
  • Essig oder besser: Essigessenz


Durchführung:
CO2Schütten V.jpg

  • Entzündet das Teelicht im schmalen Glas
  • Gebt das Backpulver in das große Gefäß und legt das Geschirrtuch bereit
  • Schüttet nun etwa 50 - 100mL Essig auf das Backpulver und bedeckt dann sofort das Gefäß mit dem Geschirrtuch. (Hinweis: Bei dem Versuch entsteht das Gas Kohlenstoffdioxid. Das ist schwerer als Luft und soll im Messbecher bleiben. Durch kleinste Luftverwirbelungen wird es aber aus dem Messbecher gespült. Mit dem Geschirrtuch soll das verhindert werden.
  • Wartet ab, bis die Gasentwicklung nachlässt. Euer Messbecher ist nun randvoll mit Kohlenstoffdioxid (was man aber nicht sehen kann).
  • Zieht nun vorsichtig das Geschirrtuch ab. Und gießt das Kohlenstoffdioxid in das schmale Gefäß mit der Kerze. Achtung: Nicht den Essig in das schmale Gefäß gießen!


Beobachtung/Erklärung:
Da das Gas Kohlenstoffdioxid schwerer als Luft ist, wird es in das schmale Glas "fallen" und dort die Luft verdrängen. Eine Verbrennung ist in reinem Kohlenstoffdioxid nicht möglich. Daher sollte die Kerze erlöschen. Wenn ihr auf "Video" klickt, seht ihr eine Variante, so wie es aussehen sollte.