Um die Formel für den Flächeninhalt eines Parallelogramms herzuleiten, musst du den Begriff der "Höhe" kennen.
Höhen im Parallelogramm
Der Abstand zwischen den parallelen Seiten des Parallelogramms wird als Höhe bezeichnet. Ein Parallelogramm hat zwei Höhen. Du zeichnest die Höhe, indem du eine Strecke rechtwinklig zu einer Seite zeichnest und diese mit der dazu parallelen Seite verbindest.
Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?
Höhen im Parallelogramm zeichnen
Zeichne ein beliebiges Parallelogramm in dein Heft und beschrifte die Seiten a und b. Zeichne nun die Höhen ha und hb.
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Parallelogramms herzuleiten. Notiere deine Ideen.
Flächeninhalt und Umfang des Parallelogramms
Datei:Parallelogramm mit zwei Höhen.png
Der Flächeninhalt A eines Parallelogramms ist gleich dem Produkt aus der Seitenlänge und der zugehörigen Höhe. A = a∙ha oder A = b∙hb; allgemein: A = g∙h
Der Umfang u eines Parallelogramms wird berechnet mit
u = 2a + 2b oder u = 2(a + b).
Übung 3
Bearbeite die nachfolgenden Learningapps und das Applet. Schreibe zur ersten App die Aufgaben dazu strukturiert ein dein Heft.
In der zweiten App darfst du "nur" rechnen und auch im Geogebra-Applet gib "nur" das Ergebnis in das entsprechende Feld ein.
Übung 4
Berechne den Flächeninhalt und Umfang der Parallelogramme im Buch
S. 85 Nr. 1
S. 85 Nr. 2
S. 85 Nr. 6
Gegeben sind in der Zeichnung a=8cm; ha=5cm und b=6cm.
A=a∙ha =8∙5 =40 (cm²) Achte auf die richtige Einheit cm²
u=2a + 2b =2∙8 + 2∙6 =28 (cm)
Achte auf gleiche Einheiten!
a=3dm=30cm; b=71cm; c=0,9m=90cm
3) Formeln umstellen
Umstellen der Formel
Um die Länge einer Seite oder Höhe zu berechnen, müssen die Formeln für den Flächeninhalt bzw. Umfang umgestellt werden. 1. Stelle die Flächeninhaltsformel um nach der Seitenlänge und nach der Länge der Höhe. 2. Stelle die Umfangsformel nach einer Seitenlänge um.
Umstellen nach einer Seite:
A = a∙ha |:ha = a
a =
Umstellen nach einer Höhe:
A = a∙ha |:a = ha
ha =
Umstellen der Umfangsformel nach einer Seite:
u = 2a + 2b |-2b
u - 2b = 2a |:2 (denn 2a=2∙a, rechne also umgekehrt :2!) - b = a
Stelle die Formel entsprechend nach b um.
Übung 5
Löse die nachfolgende LearningApps. Schreibe die Aufgabe struktuiert in deinem Heft mit.
Übung 6
Löse Buch
S. 85 Nr. 7
S. 96 Nr. 3
Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann ein und berechne.
Übung 7
Ein Parallelogramm hat den angegebenen Flächeninhalt. Gib jeweils zwei Möglichkeiten für g und hg an und zeichne die Parallelogramme.
a) A = 24 cm²
b) A = 0,45dm²
Übung 8
Nachdenkaufgabe: Löse Buch
S. 86 Nr. 14
Nutze als Hilfe das nachfolgende Applet: Verschiebe den Punkt und beobachte, was mit dem Flächeninhalt und dem Umfang des Parallelogramms geschieht. Notiere und erkläre. Tipp: Lass dir die Höhe anzeigen (Haken setzen).
4) Anwendungsaufgaben
Übung 9: Anwendungsaufgaben zu Parallelogrammen
Löse die Anwendungsaufgaben übersichtlich. Notiere zunächst die gegebenen Größen. Zeichne eine Skizze und beschrifte diese. Überlege, was gesucht ist. Unterscheide zwischen Flächeninhalt A(innen drin) und Umfang u (drum herum).
S. 86 Nr. 9
S. 86 Nr. 10
S. 86 Nr. 11
S. 86 Nr. 12
S. 86 Nr. 13
Prüfe, ob die Fläche der Gangway richtig berechnet wurde.
Beschrifte die Skizze vollständig und bestimme dann den Flächeninhalt der Straße (Parallelogramm)
geg.: Dachfläche zusammengesetzt aus zwei Parallelogrammen mit
1. a = 6 m; ha= 4,25m
2. a = 4m; ha = 4,25m
35 Dachziegeln pro m²
ges.: Anzahl der Dachziegel
Die gesamte Fläche ist 42,5 m² groß, also werden 42,5∙35 = 1487,5 Dachziegel benötigt. Hier muss in der Antwort eine sinnvolle Zahl für die gegebene Situation angeben werden!
Es entsteht ein Parallelogramm (eine Raute). Miss dann die Länge der Seite a (es müssten ca. 8,7cm sein). Damit kannst du dann den Flächeninhalt A = aha = ... berechnen.
geg: Treppenaufgang Parallelogramm,
a= 3,30m; ha= 2,00 m
(oder b = 2,7 m ; hb= 2,45 m)
45,30€ pro m²
ges.: Kosten
Übung 10
Nachdenkaufgabe: Löse Buch
S. 90 Nr. 14
Nutze als Hilfe das nachfolgende Applet: Verschiebe den Punkt und beobachte, was mit dem Flächeninhalt des Parallelogramms geschieht. Notiere und erkläre.
5) Raute: Umfang und Flächeninhalt
Die Raute ist ein besonderes Parallelogramm, also gelten auch die Formeln des Parallelogramms für die Raute.
Cookies helfen uns bei der Bereitstellung von RMG-Wiki. Durch die Nutzung von RMG-Wiki erklärst du dich damit einverstanden, dass wir Cookies speichern.