6a 2020 21/Mathematik/Flächenberechnung - Parallelogramm

Aus RMG-Wiki
Hefteintrag im Merkheft

Schreibe eine neue große Überschrift:
4. Flächeninhalt und Volumen
4.1. Flächeninhalt eines Parallelogramms

Schreibe nun alles mit, wenn es mit "Hefteintrag" markiert ist.

Höhen im Parallelogramm

Um die Formel für den Flächeninhalt eines Parallelogramms herzuleiten, musst du den Begriff der "Höhe" kennen. Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?

GeoGebra


Hefteintrag

Höhen im Parallelogramm
Der Abstand zwischen den parallelen Seiten des Parallelogramms wird als Höhe bezeichnet. Ein Parallelogramm hat zwei Höhen. Du zeichnest die Höhe, indem du eine Strecke rechtwinklig zu einer Seite zeichnest und diese mit der dazu parallelen Seite verbindest.



Skizze im Merkheft

Zeichne ein beliebiges Parallelogramm in dein Heft und beschrifte die Seiten a und b. Zeichne nun die Höhen ha und hb.

Falls du Schwierigkeiten damit hast, helfen dir die Bildfolgen im Original des Lernpfads.

Formeln herleiten: Flächeninhalt A und Umfang u

Idee

Hier gibt es nochmal die Idee zur Herleitung des Flächeninhalts.

GeoGebra



Hefteintrag im Merkheft

Flächeninhalt und Umfang des Parallelogramms
Der Flächeninhalt A eines Parallelogramms ist gleich dem Produkt aus der Seitenlänge und der zugehörigen Höhe.
A = a∙ha oder A = b∙hb; allgemein: A = g∙h
Der Umfang u eines Parallelogramms wird berechnet mit

u = 2a + 2b oder u = 2(a + b).



Übung

Bearbeite die nachfolgenden Learningapps und das Applet.
Schreibe zur ersten App die Aufgaben dazu entsprechend der vorgegebenen Struktur ((1) geg. usw.) in dein Übungsheft.

In der zweiten App darfst du "nur" rechnen und auch im Geogebra-Applet gib "nur" das Ergebnis in das entsprechende Feld ein.




GeoGebra


Übung

Bearbeite folgende Aufgaben im Übungsheft:

  • S. 140/5
  • S. 141/9a,b jeweils (1) bis (3)
  • S. 141/10 a und b (Überlege vor dem Zeichnen des Koordinatensystems, wie groß es werden muss.)


Übung

Bearbeite folgende Aufgabe im Übungsheft:

  • S. 142/17