Benutzer:Karina Hetterich/Wiederholung ManipulationFunktionen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
Verschieben/Strecken/Spiegeln von Funktionen  
=Verschieben/Strecken/Spiegeln von Funktionen=


Dies hier ist eine kleine Wiederholung, um zu sehen wie ein Parameter den Funktionsgraph beeinflusst.  
Dies hier ist eine kleine Wiederholung, um zu sehen wie ein Parameter den Funktionsgraph beeinflusst.  
Zunächst schauen wir uns die Verschiebung an:


<big>In der Funktion '''<span style="color: #CD00CD">j: x -> (x - a)³ + b</span>''' werden beide Möglichkeiten der Verschiebung zusammengeführt.
===Verschieben===
 
 
In der Funktion j mit dem Term'''<span style="color: #CD00CD">j(x)=(x - a)³ + b</span>''' sehen wir beide Möglichkeiten der Verschiebung.  


Wie wirkt sich die Veränderung von '''<span style="color: red">a</span>''' und '''<span style="color: blue">b</span>''' auf den Graphen der Funktion '''<span style="color: #CD00CD">j</span>''' aus?
Wie wirkt sich die Veränderung von '''<span style="color: red">a</span>''' und '''<span style="color: blue">b</span>''' auf den Graphen der Funktion '''<span style="color: #CD00CD">j</span>''' aus?


Kannst du eine allgemeine Regel aufstellen?</big>
Kannst du eine allgemeine Regel aufstellen?
<br />
<br />
<ggb_applet width="781" height="638"  version="4.2" ggbBase64="UEsDBBQACAAIAP2OyEIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAD9jshCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb627bOBb+3XkKQj8WKcYXUVera88gSZsmRTJbNNlisItdgJZom40seSTKsYt5q3mDebI9JHWzlTpy2mnTddqEInXIw/Odq2h5+PNqHqIlTVIWRyMN93QN0ciPAxZNR1rGJ92B9vNPPwynNJ7ScULQJE7mhI80q2do1Tzo9SxXTGbBSPN0nZKx5XX9ie12rQkmXaIbQZfqDtWJZwa2M9YQWqXsRRT/QuY0XRCfXvszOieXsU+4XHPG+eJFv393d9cruPfiZNqfTse9VRpoCHYepSMtv3gBy21MujMluaHruP/r1aVavsuilJPIpxoSUmXspx+eDe9YFMR36I4FfDbSXM/T0Iyy6QzEdG1XQ31BtABZF9TnbElTmFrrSpn5fKFJMhKJ+8/UFQpLcTQUsCULaDLS9J7juo5r66apG7bueVhDccJoxHNaPefZL1YbLhm9U8uKK8nR0j3Y25KlbBzSkTYhYQpSsWiSAKKwoSSDbsrXIR2TpOhX+8Ed+AcE7CMVawFLBcNIM7zOwOw40Nh2vpMaW2MHz7xfMc0HKq56Ry94GnWeMN6BgY7cyBbHgYZ4HIdyQQzaRL8jaAzVmAj9Li9s1bfyrqO6rmywrhqc3xyIP57oOPtI04TQLIQx68LA4h3x63xCIFxjqtbcB8GCpY3NTfysT7CzavjpyJZyG7qho45osGoMaBxH3dLVGGArG0M1lmpsRWOp6ZYitRSNpWgscw8Bt0E1Cvkw9trJh/dSYgPQ0gmwXdOhrXfkf/nbYGnu5QUNu3kER8f6HF9/BENX3zCbwmZUi/N2FwxfbFPDfhH9hvmGUDoTtLlpcTpPxRZNTxo3wsgGC3ZcsEUbYQ8aVwQLA2EbWTZ08QA5onWRKeKDhUw0QIIOm0iasD2AP5aMHQ6yYS0x6KoggkwL2SbC0vAtBCgg6TyAiWEChW0jGyYJ7liwNR1kOdAxB8iCDQq3cUUIM2Ee9IG5gUyMTDEXu8hwkGMgV7getoRHOgOxd1jUQI6OHDEVfA/8TvkczBggU0gDXrCIU1aCO6PhotSKxJFFi4zn2OXj/jwocOTxFnkQ+7cnJdj5HUpSXieDHFVlQpWzNhLls2FIxjSEcuJaWAJCSxKC/2iSwySOOCqswFFj04QsZsxPrynnMCtFH8iSXBJOV2dAnRa8JWuZv4c080MWMBK9BzMRS4gFUZnOB7hK5yJmSi5+HCfB9ToF20Grf9EkFmlP73m1H0g76/yO7fT02g+GvJv6RBi95W3M8QaghfUn7nmKNV2WopEVTQv4pwkL6tcX6UkcBiXUi5hF/JQseJbI0gxCbCJkOo6mIZXQytAJRY5/O45X1wpTU611s15QkTkk//H0NA7jBCVCMBsI8nasWkkjNlZS6ZJGlxR6oSQWlPexZ0gK2Y5VK6lA62pruaC4kBLrBRuWymAjklrNpaXJiJIpixi/LDqc+be5pFjR/5LNx2Bt+bTNJfEXWnLY37KvYbpIKAnSGaX8YYsrsIA5k1Mahtd1Smw6FaXhKsra8gBxNo8KhIpJur2LEJeErr6LzmhJZ7aks1rS2S3pnJZ0bku6QUs6ryUd1tsSttUIbqsS3FYnuK1ScFut4LZqwW31gtsqBrfVjNFWM0ZrX2mrGaOtZoy2mjF2auZdXD5RFGHE/DSVUaPKs21KQ5Gq4wih2bWfxGEoQ82ydu3LzcjLRJbieXAn6zgT2RuC5lmczLOQnNTqazH8upbSRP9crbpN9v7+4RPgltLkLTwChxs3FDrnIB3dnAFyqlFUDpMwjO+uoRxhJHwVMB4nm7duoKC8YYu0qm9+y+DiHTQsoVX6JRmPT+P5IqSc1kqQTa1BeD+TxyMoPya5Igv16DLp4BfwTJi3RoeoMZVfGvlkeEsTEFrVKRGUClmcpapwqnHOUvqW8NlxFLyjU9DgWyLqbg7JS5FWOTEA8ecwUY3nCYmIwuGfkAzVaECnCS1yaChPW1Tqlnf1etXUGJZLnSXx/CJa3kBVsrXVYb+QZ5j6CVuI2geN4UHgtgZwwFICjxFBfR4In4IUyj454yJNvwf5/BmjYxqhJQyfZdGtuA/diPgzBDXHbdpPqD/jKeT6AMVA2c8iTiOpxZmwgKt1wsgcXcLGgTPh8jQCXREG1TwEV1FTrkApqTjcUpWDsCgwjpUokY9Wz9EIrf57ZD6X2wQXmlMoZLmssiZZJDdclhwTeS4k7BP28gG8baskqfQEtz9RdIGxLmZEnBxV3gdmXleCXO0fk0lKOVrJdLceaV17ULt7FQebipuwFQ22raWq2jjU4bcRwCCzNs+LSHlxzoKAyucMVSIpCBpgRNmcJswvZSUSC2CYFRspBNoXn6J0VQjZuAYR3glRBUJOl4biVA7NGYjThbA8JytZzZBxCoGGU4hOlEbVuaTaXFmMCQkE4LYnD0/XYswRVxLc0r7B7thHcOYWWBu7sBbeBs4sXQKeXhZKYARPXFTlgXLqAgCQjwo1R2yrp/EX05OyY6Ef8XyhW09IT4bh7tZTLdh+Q0VtRaKRNssD0UwFoqMV6iLyXIYj1CIezR6IRzWpWzpc25jUFQWXiEpQl36RqGQWKBoPhqUGih9yFD80UEQ/onErJD88KrJLJyiB3HSJtkhalgKyKOO+Xnhv4DjNcZzW0mJrBKePs8UdQaW9LRq5LX57U7yhK45zGP/2Wxbzv4saY7T68w/Vu6fK4DBF25z/GUjuW2a0w4mll+SG/ro9LA/9oLBnk/LZgH2kV/mHj+owUM8PjqtYem+QRyqgm1KTpuM9BDVUcccF0Mc4N9g2NdzxPfAWHyR8M3zLZ7dj8SRT3K9thGQrFjKSrFtZ8M5sttuAj42iNm7l9UD+5Iz1CYFpFpmpHZjmI/P5o9PQEwd0Z2F7grcr2651b2n7Wd69Z2X7RfFrj8VpEwvzULF42cTCOFQsXjWxwIeKxVkDi/ufhA8AitcNKA7WKs4bUBxssLhoQHGwOeRNA4qDLS1OjEYKcQ4WjNMmGPLk8SDBeNkEY3CoWLxqYnGwKfWsgcXhFloNKA7WKs4bUBxssLhoQHG4SeRNA4v/6+qicUR4UhwRHnWtBz+2atRm5o7arO0J4deX+bSS2dxb5tOmzJX3PF2ZX1YyG3vL/LIp8+Dpi/yqEhnvLfKrpsj46Yt8Vom8n7hnDXH1py/t61La/fX7uiHwd6De81Lg/X34vCHwd+DCb0qB909ObxoCfw+56aKUeP/UdNGQ+HvITOKVA3PjlYV1+3cVHvmJ5V/68S8nCX8rvmMj3ykASO36N3fcgSvfMbB6rlsfdzT0sQxCDyNmbSC2ao+Y9eQR83p2/StSui3xAlabX4/y9gPM2ACs/qrWkRoCLzuSb5n8m/xHuJwaff78zz/EnW2acZ0mR/8eF23A/8j3Ff7qj9i/0gs2lqdeJraaL9j0669oy2/k5d/U/+l/UEsHCG50abgWCgAAWUAAAFBLAQIUABQACAAIAP2OyEJFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA/Y7IQm50abgWCgAAWUAAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACuCgAAAAA=" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" useLocalJar="true"/>
<ggb_applet width="781" height="638"  version="4.2" ggbBase64="UEsDBBQACAAIAP2OyEIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAD9jshCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb627bOBb+3XkKQj8WKcYXUVera88gSZsmRTJbNNlisItdgJZom40seSTKsYt5q3mDebI9JHWzlTpy2mnTddqEInXIw/Odq2h5+PNqHqIlTVIWRyMN93QN0ciPAxZNR1rGJ92B9vNPPwynNJ7ScULQJE7mhI80q2do1Tzo9SxXTGbBSPN0nZKx5XX9ie12rQkmXaIbQZfqDtWJZwa2M9YQWqXsRRT/QuY0XRCfXvszOieXsU+4XHPG+eJFv393d9cruPfiZNqfTse9VRpoCHYepSMtv3gBy21MujMluaHruP/r1aVavsuilJPIpxoSUmXspx+eDe9YFMR36I4FfDbSXM/T0Iyy6QzEdG1XQ31BtABZF9TnbElTmFrrSpn5fKFJMhKJ+8/UFQpLcTQUsCULaDLS9J7juo5r66apG7bueVhDccJoxHNaPefZL1YbLhm9U8uKK8nR0j3Y25KlbBzSkTYhYQpSsWiSAKKwoSSDbsrXIR2TpOhX+8Ed+AcE7CMVawFLBcNIM7zOwOw40Nh2vpMaW2MHz7xfMc0HKq56Ry94GnWeMN6BgY7cyBbHgYZ4HIdyQQzaRL8jaAzVmAj9Li9s1bfyrqO6rmywrhqc3xyIP57oOPtI04TQLIQx68LA4h3x63xCIFxjqtbcB8GCpY3NTfysT7CzavjpyJZyG7qho45osGoMaBxH3dLVGGArG0M1lmpsRWOp6ZYitRSNpWgscw8Bt0E1Cvkw9trJh/dSYgPQ0gmwXdOhrXfkf/nbYGnu5QUNu3kER8f6HF9/BENX3zCbwmZUi/N2FwxfbFPDfhH9hvmGUDoTtLlpcTpPxRZNTxo3wsgGC3ZcsEUbYQ8aVwQLA2EbWTZ08QA5onWRKeKDhUw0QIIOm0iasD2AP5aMHQ6yYS0x6KoggkwL2SbC0vAtBCgg6TyAiWEChW0jGyYJ7liwNR1kOdAxB8iCDQq3cUUIM2Ee9IG5gUyMTDEXu8hwkGMgV7getoRHOgOxd1jUQI6OHDEVfA/8TvkczBggU0gDXrCIU1aCO6PhotSKxJFFi4zn2OXj/jwocOTxFnkQ+7cnJdj5HUpSXieDHFVlQpWzNhLls2FIxjSEcuJaWAJCSxKC/2iSwySOOCqswFFj04QsZsxPrynnMCtFH8iSXBJOV2dAnRa8JWuZv4c080MWMBK9BzMRS4gFUZnOB7hK5yJmSi5+HCfB9ToF20Grf9EkFmlP73m1H0g76/yO7fT02g+GvJv6RBi95W3M8QaghfUn7nmKNV2WopEVTQv4pwkL6tcX6UkcBiXUi5hF/JQseJbI0gxCbCJkOo6mIZXQytAJRY5/O45X1wpTU611s15QkTkk//H0NA7jBCVCMBsI8nasWkkjNlZS6ZJGlxR6oSQWlPexZ0gK2Y5VK6lA62pruaC4kBLrBRuWymAjklrNpaXJiJIpixi/LDqc+be5pFjR/5LNx2Bt+bTNJfEXWnLY37KvYbpIKAnSGaX8YYsrsIA5k1Mahtd1Smw6FaXhKsra8gBxNo8KhIpJur2LEJeErr6LzmhJZ7aks1rS2S3pnJZ0bku6QUs6ryUd1tsSttUIbqsS3FYnuK1ScFut4LZqwW31gtsqBrfVjNFWM0ZrX2mrGaOtZoy2mjF2auZdXD5RFGHE/DSVUaPKs21KQ5Gq4wih2bWfxGEoQ82ydu3LzcjLRJbieXAn6zgT2RuC5lmczLOQnNTqazH8upbSRP9crbpN9v7+4RPgltLkLTwChxs3FDrnIB3dnAFyqlFUDpMwjO+uoRxhJHwVMB4nm7duoKC8YYu0qm9+y+DiHTQsoVX6JRmPT+P5IqSc1kqQTa1BeD+TxyMoPya5Igv16DLp4BfwTJi3RoeoMZVfGvlkeEsTEFrVKRGUClmcpapwqnHOUvqW8NlxFLyjU9DgWyLqbg7JS5FWOTEA8ecwUY3nCYmIwuGfkAzVaECnCS1yaChPW1Tqlnf1etXUGJZLnSXx/CJa3kBVsrXVYb+QZ5j6CVuI2geN4UHgtgZwwFICjxFBfR4In4IUyj454yJNvwf5/BmjYxqhJQyfZdGtuA/diPgzBDXHbdpPqD/jKeT6AMVA2c8iTiOpxZmwgKt1wsgcXcLGgTPh8jQCXREG1TwEV1FTrkApqTjcUpWDsCgwjpUokY9Wz9EIrf57ZD6X2wQXmlMoZLmssiZZJDdclhwTeS4k7BP28gG8baskqfQEtz9RdIGxLmZEnBxV3gdmXleCXO0fk0lKOVrJdLceaV17ULt7FQebipuwFQ22raWq2jjU4bcRwCCzNs+LSHlxzoKAyucMVSIpCBpgRNmcJswvZSUSC2CYFRspBNoXn6J0VQjZuAYR3glRBUJOl4biVA7NGYjThbA8JytZzZBxCoGGU4hOlEbVuaTaXFmMCQkE4LYnD0/XYswRVxLc0r7B7thHcOYWWBu7sBbeBs4sXQKeXhZKYARPXFTlgXLqAgCQjwo1R2yrp/EX05OyY6Ef8XyhW09IT4bh7tZTLdh+Q0VtRaKRNssD0UwFoqMV6iLyXIYj1CIezR6IRzWpWzpc25jUFQWXiEpQl36RqGQWKBoPhqUGih9yFD80UEQ/onErJD88KrJLJyiB3HSJtkhalgKyKOO+Xnhv4DjNcZzW0mJrBKePs8UdQaW9LRq5LX57U7yhK45zGP/2Wxbzv4saY7T68w/Vu6fK4DBF25z/GUjuW2a0w4mll+SG/ro9LA/9oLBnk/LZgH2kV/mHj+owUM8PjqtYem+QRyqgm1KTpuM9BDVUcccF0Mc4N9g2NdzxPfAWHyR8M3zLZ7dj8SRT3K9thGQrFjKSrFtZ8M5sttuAj42iNm7l9UD+5Iz1CYFpFpmpHZjmI/P5o9PQEwd0Z2F7grcr2651b2n7Wd69Z2X7RfFrj8VpEwvzULF42cTCOFQsXjWxwIeKxVkDi/ufhA8AitcNKA7WKs4bUBxssLhoQHGwOeRNA4qDLS1OjEYKcQ4WjNMmGPLk8SDBeNkEY3CoWLxqYnGwKfWsgcXhFloNKA7WKs4bUBxssLhoQHG4SeRNA4v/6+qicUR4UhwRHnWtBz+2atRm5o7arO0J4deX+bSS2dxb5tOmzJX3PF2ZX1YyG3vL/LIp8+Dpi/yqEhnvLfKrpsj46Yt8Vom8n7hnDXH1py/t61La/fX7uiHwd6De81Lg/X34vCHwd+DCb0qB909ObxoCfw+56aKUeP/UdNGQ+HvITOKVA3PjlYV1+3cVHvmJ5V/68S8nCX8rvmMj3ykASO36N3fcgSvfMbB6rlsfdzT0sQxCDyNmbSC2ao+Y9eQR83p2/StSui3xAlabX4/y9gPM2ACs/qrWkRoCLzuSb5n8m/xHuJwaff78zz/EnW2acZ0mR/8eF23A/8j3Ff7qj9i/0gs2lqdeJraaL9j0669oy2/k5d/U/+l/UEsHCG50abgWCgAAWUAAAFBLAQIUABQACAAIAP2OyEJFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA/Y7IQm50abgWCgAAWUAAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACuCgAAAAA=" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" useLocalJar="true"/>
<br />
<br />
<br />
<br />
<big>Fülle den Lückentext mit den vorgegebenen Antwortmöglichkeiten aus.<br />
Ergänze anschließend die Lücken im Merksatz auf deinem Arbeitsblatt.<br /></big>


<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
Zeile 23: Zeile 21:
Für a < 0 wird der Graph nach '''links''', für a > 0 nach '''rechts''' verschoben.<br />
Für a < 0 wird der Graph nach '''links''', für a > 0 nach '''rechts''' verschoben.<br />
Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach '''unten''',  b > 0 nach '''oben'''.
Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach '''unten''',  b > 0 nach '''oben'''.
</div>


</div>
Eine ausführliche Erklärung findest du in diesem [[https://projektwiki.zum.de/wiki/Manipulationen_an_Funktionen/Verschieben_von_Funktionsgraphen/Verschiebung_in_x-_und_y-_Richtung Lernpfad]]

Version vom 1. April 2020, 07:15 Uhr

Verschieben/Strecken/Spiegeln von Funktionen

Dies hier ist eine kleine Wiederholung, um zu sehen wie ein Parameter den Funktionsgraph beeinflusst.

Verschieben

In der Funktion j mit dem Termj(x)=(x - a)³ + b sehen wir beide Möglichkeiten der Verschiebung.

Wie wirkt sich die Veränderung von a und b auf den Graphen der Funktion j aus?

Kannst du eine allgemeine Regel aufstellen?

GeoGebra



Allgemein gilt:
Betrachtet man den Term f(x - a) + b, wird der Graph von f um a Einheiten auf der x - Achse und um b Einheiten auf der y - Achse verschoben.
Für a < 0 wird der Graph nach links, für a > 0 nach rechts verschoben.
Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach unten, b > 0 nach oben.

Eine ausführliche Erklärung findest du in diesem [Lernpfad]