Mathematik 6/Parallelogramm: Unterschied zwischen den Versionen

Aus RMG-Wiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 2: Zeile 2:
=== Das Parallelogramm===
=== Das Parallelogramm===


Wiederholung: Ein Parallelogramm ist ein ...
Wiederholung: besondere Vierecke
 
In Anton kannst du im Pin "Figuren" mit den ersten beiden Übungen die Eigenschaften der besonderen Vierecke wiederholen. Achtung: die anderen Übungen NICHT bearbeiten!!!
 
Den Hefteintrag haben wir in der Videokonferenz begonnen. Führe ihn selbständig fort.  


====1) Höhen im Parallelogramm====
====1) Höhen im Parallelogramm====
Zeile 8: Zeile 12:
Um die Formel für den Flächeninhalt eines Parallelogramms herzuleiten, musst du den Begriff der "Höhe" kennen.
Um die Formel für den Flächeninhalt eines Parallelogramms herzuleiten, musst du den Begriff der "Höhe" kennen.


{{Box|Höhen im Parallelogramm|Der Abstand zwischen den parallelen Seiten des Parallelogramms wird als Höhe bezeichnet. Ein Parallelogramm hat zwei Höhen. Du zeichnest die Höhe, indem du eine Strecke rechtwinklig zu einer Seite zeichnest und diese mit der dazu parallelen Seite verbindest.|Arbeitsmethode}}
{{Box|Hefteintrag im Merkheft|
'''Höhen im Parallelogramm'''
 
Der Abstand zwischen den parallelen Seiten des Parallelogramms wird als Höhe bezeichnet. Ein Parallelogramm hat zwei Höhen. Du zeichnest die Höhe, indem du eine Strecke rechtwinklig zu einer Seite zeichnest und diese mit der dazu parallelen Seite verbindest.|Arbeitsmethode}}


Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?
Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?
Zeile 18: Zeile 25:


Falls du Schwierigkeiten damit hast, helfen dir die Bildfolgen im [https://projekte.zum.de/wiki/Buss-Haskert/Vierecke_und_Dreiecke/Umfang_und_Fl%C3%A4cheninhalt/Parallelogramm#1)_Höhen_im_Parallelogramm Original des Lernpfads.]|Üben}}
Falls du Schwierigkeiten damit hast, helfen dir die Bildfolgen im [https://projekte.zum.de/wiki/Buss-Haskert/Vierecke_und_Dreiecke/Umfang_und_Fl%C3%A4cheninhalt/Parallelogramm#1)_Höhen_im_Parallelogramm Original des Lernpfads.]|Üben}}
Und nun im Heft...
{{Box|Übung 2: Höhen zeichnen|Zeichne auf dem AB Nr. 1 alle Höhe ein. Eventuell musst du die Seiten verlängern.|Üben}}




Zeile 27: Zeile 30:


{{Box|Idee|
{{Box|Idee|
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Parallelogramms herzuleiten. Notiere deine Ideen.
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Parallelogramms herzuleiten. Notiere deine Ideen im Übungsheft.
|Unterrichtsidee}}
|Unterrichtsidee}}
<ggb_applet id="V6CzmdBf" width="900" height="550" border="888888" />
<ggb_applet id="V6CzmdBf" width="900" height="550" border="888888" />
Zeile 33: Zeile 36:
<br>
<br>
{{#ev:youtube|wejTKC5_p8Y|800|center}}<br><br>
{{#ev:youtube|wejTKC5_p8Y|800|center}}<br><br>
{{Box|1=Flächeninhalt und Umfang des Parallelogramms|2=[[Datei:Parallelogramm mit zwei Höhen.png|rahmenlos]]<br>
{{Box|1=Hefteintrag im Merkheft
 
|2=Flächeninhalt und Umfang des Parallelogramms<br>
Der Flächeninhalt A eines Parallelogramms ist gleich dem Produkt aus der Seitenlänge und der zugehörigen Höhe.<br>
Der Flächeninhalt A eines Parallelogramms ist gleich dem Produkt aus der Seitenlänge und der zugehörigen Höhe.<br>
'''A = a∙h<sub>a</sub>''' oder '''A = b∙h<sub>b</sub>'''; allgemein: '''A = g∙h'''<br>
'''A = a∙h<sub>a</sub>''' oder '''A = b∙h<sub>b</sub>'''; allgemein: '''A = g∙h'''<br>
Zeile 40: Zeile 45:
{{#ev:youtube|PXiqKPhvzfQ|800|center}}<br>
{{#ev:youtube|PXiqKPhvzfQ|800|center}}<br>


{{Box|Übung|Bearbeite die nachfolgenden Learningapps und das Applet.<br> Schreibe zur ersten App die Aufgaben dazu strukturiert ein dein Heft.<br>
{{Box|Übung|Bearbeite die nachfolgenden Learningapps und das Applet.<br> Schreibe zur ersten App die Aufgaben dazu strukturiert ein dein Übungsheft.<br>
In der zweiten App darfst du "nur" rechnen und auch im Geogebra-Applet gib "nur" das Ergebnis in das entsprechende Feld ein.|Üben}}
In der zweiten App darfst du "nur" rechnen und auch im Geogebra-Applet gib "nur" das Ergebnis in das entsprechende Feld ein.|Üben}}


Zeile 48: Zeile 53:
<ggb_applet id="nyxtebzk" width="900" height="520" border="888888" />
<ggb_applet id="nyxtebzk" width="900" height="520" border="888888" />


{{Box|Übung|Bearbeite folgende Aufgaben:
{{Box|Übung|Bearbeite folgende Aufgaben im Übungsheft:
*S. 140/5
*S. 140/5
*S. 141/9a,b jeweils (1) bis (3)
*S. 141/9a,b jeweils (1) bis (3)
Zeile 54: Zeile 59:
|Üben}}
|Üben}}


{{Box|Übung|Bearbeite folgende Aufgabe:
{{Box|Übung|Bearbeite folgende Aufgabe im Übungsheft:
*S. 142/17
*S. 142/17
|Üben}}
|Üben}}
Zeile 92: Zeile 97:
b) A = 0,45dm²|3=Üben}}<br>
b) A = 0,45dm²|3=Üben}}<br>


 
<big>Für Donnerstag:</big>
====Raute: Umfang und Flächeninhalt====
====Raute: Umfang und Flächeninhalt====


Zeile 106: Zeile 111:
'''A = a∙h<sub>a</sub>''' <br>
'''A = a∙h<sub>a</sub>''' <br>
<br>
<br>
[[Datei:Raute mit Diagonalen.png|rechts|rahmenlos]]Sind e und f die Diagonalen der Raute gilt zudem:<br>
Sind e und f die Diagonalen der Raute gilt zudem:<br>
'''A = <math>\frac{\text{e*f}}{\text{2}}</math>'''
'''A = <math>\frac{\text{e*f}}{\text{2}}</math>'''


Der Umfang u einer Raute wird berechnet mit<br>
Der Umfang u einer Raute wird berechnet mit<br>
'''u = 4a''' .|3=Arbeitsmethode}}
'''u = 4a''' .|3=Arbeitsmethode}}

Version vom 26. Januar 2021, 22:54 Uhr

Das Parallelogramm

Wiederholung: besondere Vierecke

In Anton kannst du im Pin "Figuren" mit den ersten beiden Übungen die Eigenschaften der besonderen Vierecke wiederholen. Achtung: die anderen Übungen NICHT bearbeiten!!!

Den Hefteintrag haben wir in der Videokonferenz begonnen. Führe ihn selbständig fort.

1) Höhen im Parallelogramm

Um die Formel für den Flächeninhalt eines Parallelogramms herzuleiten, musst du den Begriff der "Höhe" kennen.


Hefteintrag im Merkheft

Höhen im Parallelogramm

Der Abstand zwischen den parallelen Seiten des Parallelogramms wird als Höhe bezeichnet. Ein Parallelogramm hat zwei Höhen. Du zeichnest die Höhe, indem du eine Strecke rechtwinklig zu einer Seite zeichnest und diese mit der dazu parallelen Seite verbindest.

Verschiebe im nachfolgenden Applet die Punkte und beobachte die Lage der Höhen. Was fällt dir auf?

GeoGebra


Höhen im Parallelogramm zeichnen

Zeichne ein beliebiges Parallelogramm in dein Heft und beschrifte die Seiten a und b. Zeichne nun die Höhen ha und hb.

Falls du Schwierigkeiten damit hast, helfen dir die Bildfolgen im Original des Lernpfads.


2) Formeln herleiten: Flächeninhalt A und Umfang u

Idee

Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Parallelogramms herzuleiten. Notiere deine Ideen im Übungsheft.

GeoGebra





Hefteintrag im Merkheft

Flächeninhalt und Umfang des Parallelogramms
Der Flächeninhalt A eines Parallelogramms ist gleich dem Produkt aus der Seitenlänge und der zugehörigen Höhe.
A = a∙ha oder A = b∙hb; allgemein: A = g∙h
Der Umfang u eines Parallelogramms wird berechnet mit

u = 2a + 2b oder u = 2(a + b).



Übung

Bearbeite die nachfolgenden Learningapps und das Applet.
Schreibe zur ersten App die Aufgaben dazu strukturiert ein dein Übungsheft.

In der zweiten App darfst du "nur" rechnen und auch im Geogebra-Applet gib "nur" das Ergebnis in das entsprechende Feld ein.




GeoGebra


Übung

Bearbeite folgende Aufgaben im Übungsheft:

  • S. 140/5
  • S. 141/9a,b jeweils (1) bis (3)
  • S. 141/10 a und b (Überlege vor dem Zeichnen des Koordinatensystems, wie groß es werden muss.)


Übung

Bearbeite folgende Aufgabe im Übungsheft:

  • S. 142/17

3) Formeln umstellen

Umstellen der Formel
Um die Länge einer Seite oder Höhe zu berechnen, müssen die Formeln für den Flächeninhalt bzw. Umfang umgestellt werden.
1. Stelle die Flächeninhaltsformel um nach der Seitenlänge und nach der Länge der Höhe.
2. Stelle die Umfangsformel nach einer Seitenlänge um.
Umstellen nach einer Seite:

A = a∙ha   |:ha
= a
a =

Umstellen nach einer Höhe:

A = a∙ha   |:a
= ha

ha =

Umstellen der Umfangsformel nach einer Seite:
u = 2a + 2b   |-2b
u - 2b = 2a   |:2 (denn 2a=2∙a, rechne also umgekehrt :2!)
- b = a
Stelle die Formel entsprechend nach b um.



Übung
Löse die nachfolgende LearningApps. Schreibe die Aufgabe struktuiert in deinem Heft mit.





Übung

Ein Parallelogramm hat den angegebenen Flächeninhalt. Gib jeweils zwei Möglichkeiten für g und hg an und zeichne die Parallelogramme.
a) A = 24 cm²

b) A = 0,45dm²


Für Donnerstag:

Raute: Umfang und Flächeninhalt

Die Raute ist ein besonderes Parallelogramm, also gelten auch die Formeln des Parallelogramms für die Raute.


Es gibt eine weitere Möglichkeit, den Flächeninhalt einer Raute zu bestimmen. Bearbeite dazu das Applet. Findest du eine Formel für den Flächeninhalt?

GeoGebra


Flächeninhalt und Umfang einer Raute



Die Raute ist ein besonderes Parallelogramm. Daher ist der Flächeninhalt A einer Raute:
A = a∙ha

Sind e und f die Diagonalen der Raute gilt zudem:
A =

Der Umfang u einer Raute wird berechnet mit

u = 4a .