Mathematik 12/Integralrechnung: Unterschied zwischen den Versionen

Aus RMG-Wiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(9 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 11: Zeile 11:


{{Box-spezial
{{Box-spezial
|Titel= Unter- und Obersumme
|Titel= Unter- und Obersumme - Video
|Inhalt= [[bild:Int_abb1.png|220px|right]]
|Inhalt= Eine Möglichkeit ist es, die Fläche mit Hilfe von Streifen zu zerlegen und eine Annährung zu berechnen. Man bildet die Unter- und Obersumme. Eine genaue Erklärung gibts im Video.<br>
{{#ev:youtube|pDHujnO9nvQ|250px}}
|Farbe= #557799         
|Rahmen= 0             
|Rahmenfarbe= #FFFFFF 
|Hintergrund= #FFFFFF 
|Icon=
}}
 
{{Box-spezial
|Titel= Unter- und Obersumme - Beispielaufgaben
|Inhalt= [[Datei:Int_abb1.png|left]]
'''Aufgabe 1''': Gegeben ist die Funktion f(x) = 0.25 x².  
'''Aufgabe 1''': Gegeben ist die Funktion f(x) = 0.25 x².  
:#Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
:#Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
Zeile 32: Zeile 43:
'''Mittelwert: 5,375'''
'''Mittelwert: 5,375'''
|2=Lösung|3=Lösung ausblenden}}
|2=Lösung|3=Lösung ausblenden}}
<br>
<br>
'''Aufgabe 2''': Gegeben ist die Funktion f(x) = 0.1 x².
:#Zerlege das Intervall [2;5] mit dem Schieberegler in gleichlange Teilintervalle und bestimme die zugehörige Ober- und Untersumme für verschiedene Werte mit dem Applet.
:#Fasse zusammen, was mit der Unter- und Obersumme passiert, wenn die Anzahl der Teilintervalle erhöht wird.


'''Aufgabe 2''': Gegeben ist die Funktion f(x) = 0.5 x².
<ggb_applet id="dguq3rpq" width="400" height="310" />
:#Zerlege das Intervall [0;1] mit dem Schieberegler in gleichlange Teilintervalle und bestimme die zugehörige Ober- und Untersumme mit dem Applet.


Falls das Applet im Wiki nicht korrekt angezeigt wird, klicke hier: [https://www.geogebra.org/m/dguq3rpq Link zum Applet]
{{Lösung versteckt|1= Je höher die Anzahl der Teilintervalle, desto besser ist die Flächenabschätzung. Geht die Anzahl gegen unendlich nähern sich die beiden Werte immer weiter an und haben einen gemeinsamen Grenzwert.
|2=Lösung|3=Lösung ausblenden}}


<ggb_applet width="648" height="588" version="4.4" ggbbase64="UEsDBBQACAgIALigQ0QAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1V4B1BTURMuIEqkCKGE3hKiKEFAioJIDZGiSEkgVCHSpApIJ1IUCCUKCohKEVBKKBI6CEgLSJUqJXSIIL1JF178/3/em3dn7rkze+45e3fv7p7v22gD/bssjHyMNDQ0LDracCPqs5l6fwdcoI61gSqmNDRcRzpwdaT/+JqV2RPOkZpf/RvP6iim36aQ1sXzBOXJbc1OnTGuN6MGzzwVUZ6G++Mzrb6pbM9lCmglAWHvtLXRTjfHiehyNvpmETH83vkXYmJhcfFsDjJtXdENHL0LTkN3BmUHJwcHd/6irAYHvYcyao+DF0/Ih0FJJSIrP4s4wtTUqkWnnx0XPdHDacGgBVny1QE7Of6/3jm2xko1iDs4Ogp+G73tt17t+yhaC9YFF5eS4nYZKU4Su/VkJhRtacnJKqTMxhmTYZeUhPBoOMw56e7u5oxiFQapnmw+f3TWVx+0b/nVHwOUuA6WU1CISU0VmEJjPt8EjpPJpKEhzkVD3cAChFwDLqmyrZQM/7jyCt3RuC0AbDg7DcIAu3xgBEQrGORIjwHGKtARcVrDOHTrthxQPNEOt4hrzBMnvg7TArPFopF4cU6+rlZwsl+02ogwVUoK5fvf63NxajBMP0IERIQBbTEYjfLycgN5sElgHiJP1/YyiUTKqqw0qdtq48+Evn8Y8rdiQuRW5DcGY+KrB8FVBWt/j/c13RYXFzXdPCaqRckYArNH7COnWAWCZENBpdNiROXyuCfzSNb4HM844fhTlc/xKblfYaDsRmBxR6BJjmzzwsKn0WrP7BVZuuysVt0LIGMY1c1NnEwxLOHLl3MfZOj/drERaFpEj3x5+FawIjfX0eyD3tvr0cIhJ/27An0FSWX0AyMjV14KqzbMeXCCXDsSFZLrEfS1p6uk8VL72NEqj4yJjPR0EBMT07YfT/Tw8HDO4sHJzg/7xfYLVyUkLHytfa4/1S8/P2Z0KBT4EjCN3RckurYqBe7miUtKJh079qYmCJp33BXGiqlGRUa2jpU5UhQUFEDLB30dMkxqyysrpKn6IM1vBd6HFCEj+W1FkJKLtXX6hKrvaspqn7NdT0+PPJQOcagZdalj7sdib9ob/k6sxvDADwoiYrcciU+9NDZd6yPxIuF6PqCEtdiypnR1tLExVEwNtihTejUFMxsvZuQlFCjx1LzMeVJeXt7L7rn7B/HkDyP2DMm1Dli1zRYfQ/kb8WvkKr1zJUVFknLLmTsSd7gjIciI4uLrBNvWbQUgO7Duu52dHVzu5s0oHE2VUOeYZgkr+KmfH1NniNgEyvly57MSzNDcVO5r/5cAv40pn92T2vEFuX9KIiN6+fEHtQVyRo7tInQehuUrzYoqBzPPE2uj7hE3qca+Wk5ETIkONyUVIAMi4hZmmp577Rk0yaZuLHS8kehl8AwHPE7CZAZdTsfumW1R3f41nPLLpya6wnuxNw/eZ/X5rdRDhTtSE0VQKPTGtaLeKF7wSbBBrHUAhYtcr6w/pfkDKKqq+tB1vFzH/cGdP4n+R79zNafXpvrUU5X8YOjz58/r3LyGysXLQfrQDjHnicEvSZxMmI5LkeLEd8tho0xIcHUO6kQ9X6OlpSW5XsfBOg9dZ/hYk/6ocY0U7skkqPKaEwRC+GRcuz2/t0YeeGmQz2VgT/wyvzpVbzHOSpB8pmnHnyHtD/wdeUWPcmfWuOKzcyLiQuEHtHZii9OXgatxzA7l6osnywVfsthp1fXEVvLhKsFZkJVb2rvPezLH3cmV932fdl/j4uIq1ZwPVgIiydr7V4viKE91g56cY0pjjnUYcnKD0z81qNNWeR2ThQutfFJG0A9e+A6s+TL/kQVxsllpQFSjp3QMRH8cv7wilGOlhkcn1CN+B7LWIN9ozP7fzK3Tow/E45KYC9mANhRIGCM78wWKUZ0dW5gnPQZ6ziWJ0aIFG9F7ttQPeffj1Z98Nju+Yut6pd0HIiJZpTSe91DwRhWVrTsJlTghQqWzsJuMJKGyj6sfBIH7WwhoWnx+MMcxjbIoH5QprMRT6hBuhssGHgXFgu1PJAmSL2c9hrEDZPP6XG9v72JlCUAJuAK/WxiX7vIpKCZoaaiMsQewtIlewA9bbP4BDxpQ1mVJ4ehn7eYOkJPdwQeZWCwtEyp7iGSklW7Y9bNnJQZpOa5tkGjaMd/+yt7WGjodvHMfoOeRyyijHHxgsH4Fo9mH3pMxCQioueU59+JeSOONn6enzxQb1VFN72k5b6uNy3uFfrw485XQgMcuMOTrTs5ODyvGDVT6WEoYmZldNZYf2tY/yeDl5WVn4CpQPVzgCBB4H+Ocy41RQwrsSQJm+cF9fxyFk5dxx/sb3Ld9V+OXpbZDFVxHRX4WW0lUuk9eu82nxM4+pQaCjcC3zn1St2m6ND6v/B8luI/zzb+Y325mMRq0qMNSHz6GaE+0dNM0nZ3v6O5mrhhkkgm9NTY2lrnXIEL3XH3PVvTipWxJJXYlkNIl9hVpQhbkWhSgU959qs6sklzm+EqMbk/9ZSy3VOffzY1lAZ6kFq12FF14PvMIVQELC4uX58BwgamWsfEbMcFOJKacwXA6cEVSkcMWYbC2q8GcnZ29fcRuqPoOM+ttWCk0BJ28MISSFxgJKdOcZPoiGQG8bVSEKiBkT+nb2lyWLrAn8Yah05ubV4EA+jlwKv+IFn8YutgWuixtQ02suWYja84rI0fvrUwLR2stOLMsc2oluNpnLpNq+q3PX/qz1yBKNw/Ys23qomvy0q2/DtOtagRUtOBjqB9euzTaLzaBJXy952N6jdnHP8vG8uFX3/vFTs9NdT02+MF5S6I8xTkaWKQMI7MZr490zEfBp0jKQCwoX47/s0ggyi0be1LEV19oo+jJWlZaunBlIjvQCs1TfCC89iS74e8eeVvgaEngpeD1/olcNorngFV+9XU2WjplTgFjhaj1zG0u4ObM5se+LeIJ6ycnNzeWO2JYu5aNpU9paWlefCzCv0Wqw/xxPFubbP0XOiIIeKW3fGNgvFGgdLtryJMn0nKB0FgAwBWFQkXX1tba+9huhTSdfxzFX5GXp51+bt+IW9DCL+0aGO6VsXzdeDIpcLY5gi1gRoF0hlMIDJrORwBSgg9mo0QrN8Yr9E4d5Epn/e6RbkUCHh1oMzS1XKCdwu5bHYpQNb/4p1mXBSen+7tJoAyr1WBXYOugJ53knpHHj4IW80Y3v/ylVOGs+XskYi+avs+oDd3WczvktE6Ato9WBiPyEUPdmicHc8KCSNxM0Mdvfi/G/hk2pbQg+JUFhhFpTEqPyw11WX+lrD13PcLsPvWlG51V8jmqNerEOj+FDMk8VakTsbr/ysTd3N9wbPMbkU/6Bjn3eGhKv/saiIoabLiYGEme/6k3F3PQVDwxJUZnrUx7dqPSpkTi6cQ6DT+9+pdNEQsw+8W3+ZCpNipCmSEgw+t8ob7nR3dHfoAxvEJ2g+c8l4Pjo6OjDWj007KrqkxPv20iZzfAs2B0khOhBGX7PoYVR3N2x/r+i5SwmE6NVUCJ6I3Cb89AxKhNkQ9COOPF5yJGde6Ttfb+KYZs0djFNL+FadHLtpGxtyKbfcyr/acZ4GqO6qRfIQzZpxyhRInGHOri9pbnroEi+mms279zM3TBGJDhotoAt9fjeHTOaS8zd5hSRFevDhieFB3tMnda/9UraHfJtlvpEYxWITv/JywvJyvLob/fqRppmsfX3wcxWebpCuxo33RVr30QTfGDtbx+FVj5kQwVBsp5FixkX/uyhOi4m6frnhSc+u6dJ8VMPZRi0nF3QtNUTyXSkekGKXzOT0byMG/l0T2iSPI0MQWjTq3gLnAYJiARsBvGIcGLTreqewDD1ERTFMG3zOJi0K1ZztTpfvRlENEoDjCbBKXio5sl1Q7v0K3shRj1zL5/M8p69DkMt5775FZawH7uj9f2oNK5uU/3GqTWMxdxNiblyehoW0mkT2y7rJ8ref2VPq4p6xzG5kGy1LooKluuqfQNQEQ9RL2ymnxTrNbPwUDeSyNFaIY52QpOc/GCyo8kscaf3262c+/HXwU9DrdnAK6/iut6N6P/IAQHwAbtHc5RoU+Ws91jC8vlk/qAIE16A34URFeX6lWai5F6Z8Rw+tHIsksHc6fSJPD9kjloc0+ZY+sTncZ4+tFAlZ490h0xoPYLnFho7FAcvRgdaZ/QH+z4ttrEAphAj8Q7NR6No9PdFaE5Hx5oQWnx9gwR68aOJYXstif+SdX945ho+oanGctQYcNpwBed+xeAVNTEnMwFZhYYk3KvTCPeo3M9x3uM9WRl0VPJGrCytc1UXvftuIuK6ce/fuX/4asFVNjR0dFK4jDP2j2rKu2aM8d+cU9M1Bvvub2+TyetfquqtSpXwgPeYep+l69ODK69bS3qUpeZnryyvxW9Mdq+cVPKt5PlmLtq9WnRAmQ9swAqfFtJaYFJeojf+hbkwA/h/8TH3LJ3SgxUGy7TQ9/wAbgr5VBx9hhyMIhQmzIYOX01f5nWGLbUoRPwpV/D0YCZK6QS5iGejremejBa/8W7nDeG5+xNbrYBBdgRyWlNRvCUk1LEvXTXkgj6OFiZd44YMFJvBxMDjAcg8a/Bfg9YcB7vowTHrlmfGsgJO7O7UbIr3X2EOQ3ks2hdpH5OcpyrLARrutq8c1yaUTDcMv/Mo3rb9dikRkXtkeKwpZ11eym13CV2tNZ0pXmZQZU1uVycBUU1hjO2sVt1aFKzJtoXSGs4398JmeskZsVf3+AEOp+mbsQuag1/jyIYPlAvPjhqjrBHFBnDPzq38jZ5yzZjznCWpsojngERflGydG4vykuA7pI9NH/v7ukF0Vz0cgeGKdChID/yENoZDSYhsKHfqGRxVDbnZQ0lvUK42i9xI6j7wzpO+U0KVdW01C6p3tFuTBNNZKNlWgnakWV+82vInPYmbpMUGXIwF5AAuKpND8tNVbZNl4KDDeS3K5zpUXlSqrK/KInUWIIdt6HTH7uBIJ8Pk3+y9qFzjoferg9mZmdI7jBqkZdU/tACeQwsrL2fzmi/TNlYitNhacYEXRjK4zvUkOfzONBg5hKOccHToCC9gKuqENjeJVxDi5mEV8QtiDSp2Rsdi9cTXBuyuUe21JR2/kAw9YbPpxt55rjKZRblOzmRiEXfVO7yhxES6tFbyOSf3F080C6WtwvRhJFt19+pWHyaxEu3Yx9q7kjA+/RU9vb2Yo6Ojj6xiXK19nLv4IcTJd0+G2HzA+o7E3qXxYDBHHelrx3iGP0YWIUS2yevH+Z1qtQabhv+BbnwqrPZPjuorQ76E+kvJy9195iBo2rhsp74dcEWDyeIaYwktncPL+kStBP8tTqxDNWdrnoF0iTLrSQGlH7Pmr4ONDVnWDh10vvG477Mgt9+nltLyUE8O8kZp8LA2y5k0/LJ7QLZSLdHil8MyaVnt2fMO9prahT99FTWqbj52YO2uHjGq6CtboAfIpdyZTnuktCYVBvLHJ1vD4DwplYGcnCD1MwEFf5byHe/KhUE4YrIgYLy+aCG8lnEVWUgG89KZ9frx+wJE+m+wLC2G5O5xTZm0OYqjrLSBvEhkexyhlwcDXZKEtyHfd9GKy8BT1GZFH+zgAx8YRjfdRXcWO0TC2DOo7KiEA5K/w+TPHXEY1YknvoH3RFqBoVSUi270OBUIDU1xxGhgtJGvui4ERO4pYQaf5hCuBQKMsQpKCkVz0WZs4JpDuMICfNzSPvfEVJf4b89poBXZCVaxwZELST0Ng56zNqAPHf9B8IyXpA4rjTb7FZ1qeqElZTaXmjUJc7OhYo/5Dj+PhmS1VXR6/yCMhpXIhrvhYVAcTamPJOMQOS4ZvmNGE0orYy5IY9R2FzH2k0qJyCUUV1DPcTYEy2oQ+qYh3Fug+WN8B0SXDNJMtay7VRxgQ8YVyKww1dv+m+3ojh7Cbi0OUR6cFxsnobj4c9Rcz7S91AfQtkANbTlLoPzuJ0/WvcNL7MrnutOd/P5hIhP0BvM79Xdz2fFhSp7VuGkyc/UG2xY6XGUz+QtNtoVxglwODD5EfyJzEcH0+mPzrt2u8Jfvli+p40hJR0tV4PajamVfqF6lAsxEh1KkjZtEGdPG/ugFdLUEL/frjv+3Aou/f/saCxVtEC84sBiloc8gcyr7PUBvJg9S3LMpTvk/jU+YMnJgPx+Pm2yt4KGdecflgfss/o+VffMDMhIalhtEF2rJKRiZrtDl6YTRDsfHn3II1td4WMqTnEfZjgGn7pXYrfnFAkIJH41iTRuo4ESYduKKNgx/8uNqRZjI3BaHR8RE/VMnyzX3SNqq4PhekGhDSHZFWbLJ/72A9qP0zPb2xmBhZ/ujA7np2CaOGNTcKE3xGe7BK+8NO2q0rrAusZuVUOGHR4VsTXFTLmbRn3Gzwjy2wYHW/5jITAYDH4l3HqzSxJsU/5tckyyOMM1vuHvTGZa1saTXwPMfZxl6i4RAJMBodXlEipT1o/RCgr6iv72rN7/5MDzKXjp/DeFv8usMiNHcZU9Iw9B2QzbcJKHXwwHb1KWp8c7p1EhtoqvnXCXDoPmP6pFn+QsZGzWlkvkkusfwd6+fRtbWAiTUVTkTQMQZrjp4bhFyoisZC7J7tHkaxkLybblTgq/SNDO3kmQlulfmd8DhZYWHN70P4t7+aRMlNNiEuw9EMnqMWNjZkRGQSHCq7G9ZiYp3NuzFZatkcWfLyrxP4pAwmc/zq67ScHWzk47Fjdakz8/CglZt695pbBxNnefOMu9EX0WcrqRQw46+0s86JI64xmfOj1c6Wpo/1p/XLZmSG6NtadMbNmQvK0L0L5pt4MtznZGwHvCt2/uan39UePQw7c1oCdlJpu8xVoN9fHxoQJMF7S9vb2XCW7M5RN/v6/uJ+cJfUxmN9Q9kh+NxWKzPn8mcRXaSIu7KefaYzDN/S6M7SVfPZBIpDZE2QG8hChPw5jgyRf7ic7OznDqES+BpvKsrNraca7CX78cEt68me/UtrK0XOWLNMZC/ruAPZ+v6g1aUFAQs/OrZ/vCbfz5gfN0tIOYLl+M7aeunh6f1drExp1Sz3mEqXTqKr/n+aHUwHj9tBE9tP71m8ztXu/pn7FPJ3tnGhi9B/w+afbEQFljk9ap4IyA4Iy5Gx3PuGEAST4r0f7XmiMAIzQeUQHb9nXg0hHE5EbJwbL4f8RE3D/a1ZqFpwJrQ3kwlcjr0zNCeZu/3yDi/v++Xe7/+nZcYI1PtRrMecCuDXRBYGBg6+hoymMr0cRedH2gj5N5eFNWHEjgnN4WK0Y44yBd2yLY1M1wxahCS+fJMMhnux/EJdpM/teLMz86aPUbBq0hLRLPV40rJO/wVWhh79cX1foKtFTkVd6K/Iba1/Fw+ZOuf/9+zXahSGPM0H/bdgnrV9czjX84c12aEY5BmuJk6YjBqpClh93Of/sQIibjo4BdPmCsNYQVGKahEyldeg+GSQC0gkEoCGNEG9UsymMqwb5baGcT8BKgX6eY8D+A+xkMTBFS+69YO5TqiYm2I+5ag93uzK09HA310tHShxdr2IT/H1BLBwjlzt06ERYAADMWAABQSwMEFAAICAgAuKBDRAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAgIALigQ0QAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vl5bxs3Fv87/RTELFAkW1viNYccKUVToNgAThPUyW6xm90FNUNJrOfqDMeW0/S795GcS5Lt+Ai2wNqWOJx5fPf78XE8/3abpehCVrUq8oVHJthDMo+LROXrhdfo1XHkffviq/laFmu5rARaFVUm9MLjE+4N62A2IdgsVsnCi0O6EqvEP+aSUfgi8lgsmX/MuKBUzPxlglceQttaneTFjyKTdSlieRZvZCZOi1hoy3OjdXkynV5eXk466ZOiWk/X6+VkWyceAs3zeuG1FyfAbmfRJbPkFGMy/fn1qWN/rPJaizyWHjJWNerFV0/mlypPikt0qRK9WXgBjzy0kWq9ATNDHyZTQ1SCraWMtbqQNSwdTa3NOis9SyZy8/yJu0Jpb46HEnWhElktPDzxKQkwn7GIhvbCQ0WlZK5bWtLKnHbc5hdKXjq25spK5HgWQghUrZapXHgrkdZglcpXFXgUFKoamNb6KpVLUXXzQR9yBL9AoD5KwwtC59wAT0KKj2hAjyKCj3wfO2XGkj2kiyK1bDHyZ+jTJ0QxxejIDMQNFIYgcI+wu4eZG6gbuBt8R8Pdcu5IuaPhjoazWwxt54Ol7Y0dUztD2Y6hGB+ZTwAf64E9O6ORncQY8QkRo70dGDJ6E6u/GXg7Ddw0tAPBbiDtw8h8WX8Fj7SIPcgiMpLqEuJmoQcJ00kMWHh3ifRRdg5WsuhQJvVvsPKRzu2EEn/kWpBl/+znQCS7l503uvYeEgP+mOJ/gMAQ75R9V/NuJO14mxu+mFLzaQeH81YhVG8MbZvSWma1UZHNLDghgnwo3iAELPERmcEQmiKmiPiI+zAlEQrMGCJm6pYjhiJk6AhDFoL8CL64rekA+cDL3AxdcSPGkc8QscDFEXgBWfADn1AGFL6PfFhkpBMjlgWIBzBhEeKgoIG90EALg3UwB+EUMYKYWUtCRAMUUBQa6CTcIGoQGd2BKUUBRoFZCtgJuOkwE1ZEiBlroArKola9czcyLfuoWD+qvGx067v2fpwlnR91sUeeFPH5yz1nS1Hr7hqIYMsaNka3he3sm0/mqVjKFLqLM5MHCF2I1JS55b8qco26HODu3roS5UbF9ZnUGlbV6BdxIU6FltsfgLruFLS0cZHXb6tCf1+kTZbXCMVFijvl4JqMrulgcZGy0QM+fuCPHgSj6/BauQU8QU0tQX5R1R25SJJXhmLAAXDfmzy9ellJcV4WateM+dR2JXPZxKlKlMj/DrlupBi/oL5JMRjcNSmBH3SKFFVydlVDAaDtP2VVGGCaMAI/LKSM+7MI8uDKPfEpmwRs+PVBs1iYwuWcTIIwYtSPQj7zQdLV9U+CqI2SvOjjI7ayN31dqWR8/ap+WaRJ7whr+/ei1E1l201A+8pY9F2+TqXND7t/QOMWny+L7ZlLDOZ4vbsqYYad/OXa+hwBqlAfDFm349KNlsYo1lNhS4MtBe4yTSX9czKjlsKOSzdaKkhdp1prKOusJLgTo2qLl9jbKRSb9wtv66EmV/rUzaDIVHzemkrcgh+bbCn79NnlSa7leXV/nvPpXn7Nz2WVy7RNZwhlUzS1q85RpkNyvxV6812e/CTXgCtvhYF2Dawd6aByImOVwUJ3vwuBCex7UNXdTeS6kp2Jqe3wnWvtUzzO6YPbltUPVZG9yi/eQdbsqTqfdvbM67hSpclNtIS95lwO+ZeoWsBOlYzXmUoFK2KDmuBIbZwINdzoTVHZJh6gB0ZToNuykrU5/7g4IGADeLg1oPl0+wwt0FNo9NFf0fY/T+mzZ5a7TGUGbT7SNnlXTW7l9IFc2SOECRgqlr8AaA7dSUswhAII+mz1yU46I5GWG2HOGa2zUnElqx33WX6vi2TfqRAzazlASGkYmPwppXSpp9uSQyUwtBU70mcoDA14fQ7nFlcd/SJz8TeVJNLuRi4HnTsOHJM3maxU3JstrF9A06bTt7PsFl8NuTh2Fb7BU+SOniLXe+qufrq7zct9m8n/v835vs3BtTbvgN+XNPnNalVLjbaw0ZlNr7f8en/UqTnOo0y59ioTW3s0AWnLGjoQLc9igLd8eKPh9G53cDj5mvclZg21r12MODozVyu1HaEUAI/6CJC8i6/Xlhu/rdy+TADjIstEnqDctvTvS2jvzprMG7pJgS0OCmLKFglqMhkJZoLrotTojqwwe5IT0LL9bIa4JQdoQAkOeETwjFEcYp8Hn8uaG4CUYj5KHILpw6vl2gDRu+LhrptPi8tHuLnJ9b393K45cDShISPg6e7vgX5uNywztC3an+Tn/U184b2TW03bffzrX5tCP39jcq7JMnmC4OfNf39zt9E3KIePm/wO231/2yZp/+jrvxD8/L31Z8fk/ed5uAAMTOy3O2LtRg5OQtrbVf5BIbkJMe/ZQtRaVPqtaeyRwTY8iXDgk5BgznBEaOBwFU/CADMaEA41G3LKIQE+9lvc5wNEdgJk2q1F77mnp+Kd/Plfq38/67334YMNgjggEiOi5x9+bUQC5u8TLQ855QdE+ZjIMvpgIvPbO6kgQyGW4KRU/n6POJI/NY6qtnbtt/X2iF4DVKyG4ywcy163/zpwZ3fcvuW5NSm4efVLAapD1qbEbMY4ALlPA0b8cHZTRuxC4yvw7boS6WegcR8TQZX7AaJZcIiGwd7PA+GQ+GyMh4/o0b40GuqfVLzRar1Tb+09UOgfstInA2iZAHdFgO6Y6r2EO3sOjmiJcm2MeZPSUsf/O0iDLiGkeBZhxvyIY9xhWjDj5h87PAwYi3gU3ohpO95YFkUqxXAIjPfzbKi+L9UF3+6AoQsmxLemUXarg2JR2nDYe11y5DY5kMg/SjPb98F0fNC2b73a//G9+ANQSwcIEjnXQF0IAACTHAAAUEsBAhQAFAAICAgAuKBDROXO3ToRFgAAMxYAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICAC4oENERczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAABVFgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIALigQ0QSOddAXQgAAJMcAAAMAAAAAAAAAAAAAAAAALMWAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAASh8AAAAA" enablerightclick="false" showalgebrainput="false" enableshiftdragzoom="true" showmenubar="false" showtoolbar="false" showtoolbarhelp="true" enablelabeldrags="false" showreseticon="true" />
|Farbe= #557799           
|Farbe= #557799           
|Rahmen= 0               
|Rahmen= 0               

Aktuelle Version vom 16. September 2021, 20:06 Uhr

Das Flächenproblem

Integral Grundstück.png

Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.


Unter- und Obersumme - Video

Eine Möglichkeit ist es, die Fläche mit Hilfe von Streifen zu zerlegen und eine Annährung zu berechnen. Man bildet die Unter- und Obersumme. Eine genaue Erklärung gibts im Video.


Unter- und Obersumme - Beispielaufgaben
Int abb1.png

Aufgabe 1: Gegeben ist die Funktion f(x) = 0.25 x².

  1. Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
  2. Berechne die zugehörige Ober- und Untersumme.
  3. Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.

Wir zerlegen das [0;4] in 8 Teilintervalle. Jedes Teilintervall ist 0,5 breit.

Zu den x-Werten 0; 0,5; 1; 1,5;.....4 gehören die folgenden y-Werte:

x   : 0   0,5      1    1,5   2   2,5      3     3,5   4
---------------------------------------------------------
f(x): 0  0,0625  0,25  05625  1  1,5625  2,25  3,0625  4

Für den Flächeninhalt der Obersumme gilt:
S = f (0,5) 0,5 + f (1) 0,5 + .....f (4) 0,5 = 0,5 f(0,5) + f(1) + ...f (4) = 6,375

Für den Flächeninhalt der Untersumme gilt:
s = f (0) 0,5 + f (0,5) 0,5 + .....f (3,5) 0,5 = 4,375

Mittelwert: 5,375



Aufgabe 2: Gegeben ist die Funktion f(x) = 0.1 x².

  1. Zerlege das Intervall [2;5] mit dem Schieberegler in gleichlange Teilintervalle und bestimme die zugehörige Ober- und Untersumme für verschiedene Werte mit dem Applet.
  2. Fasse zusammen, was mit der Unter- und Obersumme passiert, wenn die Anzahl der Teilintervalle erhöht wird.
GeoGebra

Falls das Applet im Wiki nicht korrekt angezeigt wird, klicke hier: Link zum Applet

Je höher die Anzahl der Teilintervalle, desto besser ist die Flächenabschätzung. Geht die Anzahl gegen unendlich nähern sich die beiden Werte immer weiter an und haben einen gemeinsamen Grenzwert.