Benutzer:Karina Hetterich/Wiederholung ManipulationFunktionen: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Verschieben/Strecken/Spiegeln von Funktionen Dies hier ist eine kleine Wiederholung, um zu sehen wie ein Parameter den Funktionsgraph beeinflusst. Zunäc…“) Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 20: | Zeile 20: | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Allgemein gilt:<br /> | Allgemein gilt:<br /> | ||
Betrachtet man den Term | Betrachtet man den Term f(x - a) + b, wird der Graph von f um '''a''' Einheiten auf der x - Achse und um '''b''' Einheiten auf der y - Achse verschoben.<br /> | ||
Für a < 0 wird der Graph nach '''links''', für a > 0 nach '''rechts''' verschoben.<br /> | Für a < 0 wird der Graph nach '''links''', für a > 0 nach '''rechts''' verschoben.<br /> | ||
Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach '''unten''', b > 0 nach '''oben'''. | Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach '''unten''', b > 0 nach '''oben'''. | ||
</div> | </div> |
Version vom 1. April 2020, 07:11 Uhr
Verschieben/Strecken/Spiegeln von Funktionen
Dies hier ist eine kleine Wiederholung, um zu sehen wie ein Parameter den Funktionsgraph beeinflusst. Zunächst schauen wir uns die Verschiebung an:
In der Funktion j: x -> (x - a)³ + b werden beide Möglichkeiten der Verschiebung zusammengeführt.
Wie wirkt sich die Veränderung von a und b auf den Graphen der Funktion j aus?
Kannst du eine allgemeine Regel aufstellen?
Fülle den Lückentext mit den vorgegebenen Antwortmöglichkeiten aus.
Ergänze anschließend die Lücken im Merksatz auf deinem Arbeitsblatt.
Allgemein gilt:
Betrachtet man den Term f(x - a) + b, wird der Graph von f um a Einheiten auf der x - Achse und um b Einheiten auf der y - Achse verschoben.
Für a < 0 wird der Graph nach links, für a > 0 nach rechts verschoben.
Der Parameter b < 0 sorgt für eine Verschiebung des Graphen nach unten, b > 0 nach oben.