6e Lernen zu Hause: Spiegelunterricht: Unterschied zwischen den Versionen

Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 69: Zeile 69:
{{Lösung versteckt|1= Bei dieser Aufgabe ergänzt man das "schiefe" Dreieck zu einem Rechteck und löst, indem man die drei hinzugefügten Dreiecke von der durch das Ergänzen entstandenen Rechtecksfläche subtrahiert.  <br>
{{Lösung versteckt|1= Bei dieser Aufgabe ergänzt man das "schiefe" Dreieck zu einem Rechteck und löst, indem man die drei hinzugefügten Dreiecke von der durch das Ergänzen entstandenen Rechtecksfläche subtrahiert.  <br>
<math> A = A_{Rechteck} - A_{Dreieck_{unten}} - A_{Dreieck_{links}} - A_{Dreieck_{rechts}} =</math>
<math> A = A_{Rechteck} - A_{Dreieck_{unten}} - A_{Dreieck_{links}} - A_{Dreieck_{rechts}} =</math>
<br> <math>4,5 cm \cdot 2,5 cm - \frac {1}{2} \cdot 4,5 cm \cdot 0,5 cm - \frac{1}{2} \cdot 2,5 cm \cdot 2 cm - \frac{1}{2} \cdot 2 cm \cdot 2,5 cm = 11,25 cm^2 - 2,25 cm \cdot 0,5 cm - (2 \cdot \frac{1}{2} \cdot (2 cm \cdot 2,5 cm)) = 11,25 cm^2 - 1,125 cm^2 \cdot 5 cm^2 = 10,125 cm^2 - 5 cm^2 = 5,125 cm^2 </math> <br>
<br> <math>4,5 cm \cdot 2,5 cm - \frac {1}{2} \cdot 4,5 cm \cdot 0,5 cm - \frac{1}{2} \cdot 2,5 cm \cdot 2 cm - \frac{1}{2} \cdot 2 cm \cdot 2,5 cm = 11,25 cm^2 - 2,25 cm \cdot 0,5 cm - (2 \cdot \frac{1}{2} \cdot (2 cm \cdot 2,5 cm)) = 11,25 cm^2 - 1,125 cm^2 - 5 cm^2 = 10,125 cm^2 - 5 cm^2 = 5,125 cm^2 </math> <br>


Anmerkung: <br>
Anmerkung: <br>

Version vom 11. März 2021, 13:54 Uhr

16.03.2021

Schrägbild eines Würfels:
Mit Hilfe des folgenden Videos lernst du, wie man das Schrägbild eines Würfels zeichnet.
Bitte zeichne auch du unter der Überschrift Schrägbild eines Würfels dieses Schrägbild in dein Heft!


Netz eines Quaders:
EmbedVideo fehlt ein anzugebender Parameter.


Arbeitsauftrag:

Zeichne das Schrägbild eines Quaders mit l = 1,5 cm, b = 2 cm und h = 2cm!


Zur Wiederholung: Bist du fit?:
Bearbeite bitte im Buch S. 177/ 1 und 2 a), b), d). Eine Lösung dazu findest du im Buch auf Seite 250! Sollten sich nun Fragen zu den einzelnen Aufgaben und daher zum jeweiligen Themengebiet ergeben, stelle diese bitte in der kommenden Unterrichtsstunde. Danke!


Wiederholung und Vertiefung:

Umrechnen von Flächenmaßen


Prisma oder nicht?

Wiederhole zunächst für dich, woran man ein Prisma erkennt. Lies zur Kontrolle im Heft die "Information zu Prisma" oder im Buch S. 149!


Netz eines Prismas?

Nun darfst du jeweils entscheiden, ob es sich bei den Netzen um Netze von Prismen handelt.
Am besten wäre es, wenn du dir die Netze als Prismen vorstellen könntest. Falls dir das bei einem der Netze besonders schwer fallen sollte, kannst du dieses natürlich auch auf Papier übertragen, ausschneiden und durch Falten testen, ob ein Prisma entsteht...

18.03.2021

Info:
Heute wirst du erkennen, dass du basierend auf deinem Wissen zur Berechnung von Flächeninhalten von Viereck und Dreieck auch Flächeninhalte beliebiger Vielecke bestimmen kannst. Du musst diese lediglich in Flächen zerlegen, deren Formel zur Berechnung des Flächeninhalts dir bereits bekannt ist...
Du solltest dir also zunächst immer erst überlegen, in welche Teilflächen man das jeweilige Vieleck zerlegen kann.
WICHTIG: Sollten dir einzelne Formel zur Berechnung des Flächeninhalts nicht mehr zu 100% in Erinnerung sein, dann lies diese bitte zunächst in deinem Heft bzw. Buch nochmal nach. Danke!
Verbessere immer gewissenhaft deine Lösung mit meiner Lösung, falls du dennoch ein Feedback zu deiner Lösung haben möchtest oder eine Frage hast, sag mir dies bitte in der folgenden Unterrichtsstunde.


Übung - Flächeninhalt besonderer Vielecke:

Bearbeite B. S. 147/ 4 a)!


Übung - Flächeninhalt besonderer Vielecke:

Bearbeite B. S. 146/ 2 a)!


Zur Information:

Übertrage bitte den roten Kasten von Seite 146 Strategie zum Berechnen des Flächeninhalts beliebiger Vielecke als Information für dich diesbezüglich in dein Heft!

Hier wird noch einmal deutlich dargestellt, dass man den Flächeninhalt beliebiger Vielecke berechnen kann, indem man beispielsweise das Vieleck in Teilvielecke zerlegt und deren Flächeninhalt dann einzeln berechnet und addiert oder aber man ergänzt das Vieleck mit geeigneten Vielecken und löst, indem man die neu entstandene Gesamtfläche um den Flächeninhalt der hinzugefügten Vielecke verringert.


Übung - Für besonders Schnelle...:

Falls die 45 Minuten heute noch nicht vorbei sind, dann bearbeite bitte noch B. S. 147/ 6!
Bei dieser Aufgabe verwendet man die Strategie "Ergänzen".

19.03.2021

23.03.2021

Schrägbild eines Würfels:
Mit Hilfe des folgenden Videos lernst du, wie man das Schrägbild eines Würfels zeichnet.
Bitte zeichne auch du unter der Überschrift Schrägbild eines Würfels dieses Schrägbild in dein Heft!


Netz eines Quaders:
EmbedVideo fehlt ein anzugebender Parameter.


Arbeitsauftrag:

Zeichne das Schrägbild eines Quaders mit l = 1,5 cm, b = 2 cm und h = 2cm!


Zur Wiederholung: Bist du fit?:
Bearbeite bitte im Buch S. 177/ 1 und 2 a), b), d). Eine Lösung dazu findest du im Buch auf Seite 250! Sollten sich nun Fragen zu den einzelnen Aufgaben und daher zum jeweiligen Themengebiet ergeben, stelle diese bitte in der kommenden Unterrichtsstunde. Danke!


Wiederholung und Vertiefung:

Umrechnen von Flächenmaßen


Prisma oder nicht?

Wiederhole zunächst für dich, woran man ein Prisma erkennt. Lies zur Kontrolle im Heft die "Information zu Prisma" oder im Buch S. 149!


Netz eines Prismas?

Nun darfst du jeweils entscheiden, ob es sich bei den Netzen um Netze von Prismen handelt.
Am besten wäre es, wenn du dir die Netze als Prismen vorstellen könntest. Falls dir das bei einem der Netze besonders schwer fallen sollte, kannst du dieses natürlich auch auf Papier übertragen, ausschneiden und durch Falten testen, ob ein Prisma entsteht...