Benutzer:Thomas Lux/Test Oberstufe: Unterschied zwischen den Versionen

Aus RMG-Wiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 21: Zeile 21:
|spricht man|Lösung ausblenden}}<br>
|spricht man|Lösung ausblenden}}<br>
<br>
<br>
m<sub>a</sub>(C) = 12,0u
m<sub>a</sub>(C-Atom) = 12,0u
{{Lösung versteckt|
{{Lösung versteckt|
Die Masse eines Kohlenstoffatoms beträgt zwölf Komma Null u.
Die Masse eines Kohlenstoffatoms beträgt zwölf Komma Null u.
Zeile 45: Zeile 45:
|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>
<br>
<br>
Nachdem ein Stoff im Massenspektrometer untersucht wurde, konnte die Masse eines Teilchens dieses Stoffes auf 4,79 x 10<sup>-22</sup>g bestimmt werden. Rechne diesen Wert in atomare Masseneinheiten um!
Nachdem ein unbekannter Stoff X im Massenspektrometer untersucht wurde, konnte die Masse eines Teilchens dieses Stoffes auf 4,79 x 10<sup>-22</sup>g bestimmt werden. Rechne diesen Wert in atomare Masseneinheiten um!
{{Lösung versteckt|
{{Lösung versteckt|


|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>
<br>
<br>
Man sollte meinen, nachdem man jetzt die atomare Masseneinheit auch in Gramm bestimmen kann, ist die Angabe in '''''u''''' doch nicht mehr nötig. Es war doch nur eine Hilfsgröße, solange man das Gewicht von Atomen noch nicht direkt bestimmen konnte. Die Einheit hat sich aber gehalten, denn sie ist (unter anderem) in folgendem Punkt ganz praktisch: Sie lässt sich einfacher schreiben! Nehmt an, ihr habt ein Molekül "XYZ", für das gilt: m<sub>a</sub>(XYZ) = 212,3u und m(XYZ) = 3,5 x 10<sup>-24</sup>g <br>. Versucht beide Angaben in einem Word-Dokument zu schreiben! Das geht mit der atomaren Masseneinheit sehr leicht, mit der "normalen" Masse tut man sich deutlich schwerer. Dieses "Zehn hoch irgendwas" ist einfach umständlich.<br>
Man sollte meinen, nachdem man jetzt die atomare Masseneinheit auch in Gramm bestimmen kann, ist die Angabe in '''''u''''' doch nicht mehr nötig. Es war doch nur eine Hilfsgröße, solange man das Gewicht von Atomen noch nicht direkt bestimmen konnte. Die Einheit hat sich aber gehalten, denn sie ist (unter anderem) in folgendem Punkt ganz praktisch: Sie lässt sich einfacher schreiben! Nehmt an, ihr habt ein Molekül "XYZ", für das gilt: m<sub>a</sub>(XYZ) = 212,3u und m(XYZ) = 3,5 x 10<sup>-24</sup>g. <br>
Versucht beide Angaben in einem Word-Dokument zu schreiben! Das geht mit der atomaren Masseneinheit sehr leicht, mit der "normalen" Masse tut man sich deutlich schwerer. Dieses "Zehn hoch irgendwas" ist einfach umständlich.<br>
<br>
<br>
|Farbe= #607
|Farbe= #607
Zeile 62: Zeile 63:
|Inhalt=  
|Inhalt=  
Wenn ihr eure Hausaufgabe gemacht habt und das Buch auf den Seiten 34 - 35 gelesen habt, dann wisst ihr schon, dass man die Masse von Molekülen oder die Formelmasse von Salzen, gemessen in der atomaren Masseneinheit '''''u''''', ganz einfach bestimmen kann, indem man die Masseneinheiten der einzelnen Atome, die am Aufbau des Moleküls oder der Formelmasse beteiligt sind, zusammenzählt. Bsp.: Möchte man die Masse eines Schwefelsäure-Moleküls (H<sub>2</sub>SO<sub>4</sub>) wissen (in '''''u'''''), dann addiert man einfach die Masseneinheiten der am Aufbau beteiligten Atome, also: 2 x m<sub>a</sub>(H) + m<sub>a</sub>(S) + 4 x m<sub>a</sub>(O). <br>
Wenn ihr eure Hausaufgabe gemacht habt und das Buch auf den Seiten 34 - 35 gelesen habt, dann wisst ihr schon, dass man die Masse von Molekülen oder die Formelmasse von Salzen, gemessen in der atomaren Masseneinheit '''''u''''', ganz einfach bestimmen kann, indem man die Masseneinheiten der einzelnen Atome, die am Aufbau des Moleküls oder der Formelmasse beteiligt sind, zusammenzählt. Bsp.: Möchte man die Masse eines Schwefelsäure-Moleküls (H<sub>2</sub>SO<sub>4</sub>) wissen (in '''''u'''''), dann addiert man einfach die Masseneinheiten der am Aufbau beteiligten Atome, also: 2 x m<sub>a</sub>(H) + m<sub>a</sub>(S) + 4 x m<sub>a</sub>(O). <br>
[[Datei:A6_WH_Lsg1_Valenzstrichformeln.jpg]]<br>
[[Datei:ma_H2SO4_Berechnung.jpg]]<br>
<br>
<br>
Das leuchtet vermutlich den meisten ein, aber die große Frage ist doch: Woher weiß man die Werte für die einzelnen Atome? - Sie stehen im Periodensystem! Nehmt das Periodensystem im Buch auf der letzten Seite zur Hand. Ihr erkennt im oberen weißen Feld "Erklärungen", dass die Zahl links oberhalb des Elementsymbols die Atommasse in '''''u''''' angibt.<br>
Das leuchtet vermutlich den meisten ein, aber die große Frage ist doch: Woher weiß man die Werte für die einzelnen Atome? - Sie stehen im Periodensystem! Nehmt das Periodensystem im Buch auf der letzten Seite zur Hand. Ihr erkennt im oberen weißen Feld "Erklärungen", dass die Zahl links oberhalb des Elementsymbols die Atommasse in '''''u''''' angibt.<br>
Berechnet nun mit Hilfe des PSEs die Molekülmassen von: <br>
Berechnet nun mit Hilfe des PSEs die Molekülmassen (in '''''u''''') von: <br>
* Adrenalin (ein Hormon, welches euer Körper in stressigen Situationen ausschüttet), chem. Formel: C<sub>9</sub>H<sub>13</sub>NO<sub>3</sub>
* Adrenalin (ein Hormon, welches euer Körper in stressigen Situationen ausschüttet), chem. Formel: C<sub>9</sub>H<sub>13</sub>NO<sub>3</sub>
* Koffein (ein Stoff in Kaffee oder Cola, der anregend wirkt), chem. Formel: C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>
* Koffein (ein Stoff in Kaffee oder Cola, der anregend wirkt), chem. Formel: C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>
* Indigo (ein Stoff zum Färben von Jeans), chem. Formel: C<sub>16</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>
* Indigo (ein Stoff zum Färben von Jeans), chem. Formel: C<sub>16</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>
{{Lösung versteckt|
{{Lösung versteckt|
 
Adrenalin C<sub>9</sub>H<sub>13</sub>NO<sub>3</sub>: <br>
[[Datei:ma_H2SO4_Berechnung.jpg]]<br>
Solltet ihr das nicht richtig haben, dann überprüft genau, wo der Fehler lag und rechnet die anderen beiden Stoffe noch einmal nach!
{{Lösung versteckt|
Koffein  C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>: <br>
[[Datei:ma_H2SO4_Berechnung.jpg]]<br>
<br>
Indigo C<sub>16</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>: <br>
[[Datei:ma_H2SO4_Berechnung.jpg]]<br>
|Hab ich|Lösung ausblenden}}
|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>


Zeile 87: Zeile 97:
<br>
<br>
Diese chemische Gleichung sagt aus, dass man doppelt so viele Schwefel-Atome wie Eisenatome braucht, damit alles miteinander reagiert und nichts übrig bleibt. Angenommen ihr habt einen Teelöffel voll Eisenpulver und wollte exakt die Menge Schwefel dazugeben, die nötig ist, um alles vollständig in Pyrit umzuwandeln. Dann könnte man jetzt die Portion Eisen wiegen, mit Hilfe der Atommasse von Eisen ausrechnen, wie viele Atome das sind. Diese Anzahl verdoppeln und dann ausrechnen, welche Masse diese Anzahl an Schwefelatomen hat. Diese Menge könnte man dann abwiegen. Das folgende Bild veranschaulicht den Rechenweg: <br>
Diese chemische Gleichung sagt aus, dass man doppelt so viele Schwefel-Atome wie Eisenatome braucht, damit alles miteinander reagiert und nichts übrig bleibt. Angenommen ihr habt einen Teelöffel voll Eisenpulver und wollte exakt die Menge Schwefel dazugeben, die nötig ist, um alles vollständig in Pyrit umzuwandeln. Dann könnte man jetzt die Portion Eisen wiegen, mit Hilfe der Atommasse von Eisen ausrechnen, wie viele Atome das sind. Diese Anzahl verdoppeln und dann ausrechnen, welche Masse diese Anzahl an Schwefelatomen hat. Diese Menge könnte man dann abwiegen. Das folgende Bild veranschaulicht den Rechenweg: <br>
[[Datei:A6_WH_Lsg1_Valenzstrichformeln.jpg]]<br>
[[Datei:FeS2BerechnungohneMol.jpg]]<br>
Das wirkt noch etwas umständlich... <br>
Das wirkt noch etwas umständlich... <br>
Bei dieser Berechnung tauchen nämlich wieder sehr große, unhandliche Zahlen auf: Die Anzahl der Teilchen. Diese wird in der Chemie mit einem N(X) gekennzeichnet. Also z.B. kann man den Satz: "In meinem Zimmer liegen 3208 Legosteine auf dem Boden mathematisch so formulieren: <br>
Bei dieser Berechnung tauchen nämlich wieder sehr große, unhandliche Zahlen auf: Die Anzahl der Teilchen. Diese wird in der Chemie mit einem N(X) gekennzeichnet. Also z.B. kann man den Satz: "In meinem Zimmer liegen 3208 Legosteine auf dem Boden mathematisch so formulieren: <br>
Zeile 111: Zeile 121:
Wie spricht man die folgende Gleichung aus: n(Sterne im Universum) = 0,1mol (Dieser Wert stimmt ungefähr)? Wie viele Sterne sind das?
Wie spricht man die folgende Gleichung aus: n(Sterne im Universum) = 0,1mol (Dieser Wert stimmt ungefähr)? Wie viele Sterne sind das?
{{Lösung versteckt|
{{Lösung versteckt|
 
* Die Anzahl der Sterne im Universum beträgt Null Komma Ein Mol.
* Das sind 6,022 x 10<sup>22</sup> oder auch 0,602 x 10<sup>23</sup>
|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>
Schreibe als mathematische Gleichung: In der Sahara gibt es ca. 0,1mol Sandkörner.
Schreibe als mathematische Gleichung: In der Sahara gibt es ungefähr Null Komma eins Mol Sandkörner.
{{Lösung versteckt|
{{Lösung versteckt|
 
[[Datei:Übersicht_Größen1.jpg]]
|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>
<br>
<br>
Zeile 124: Zeile 135:
* Im Jahr 2018 wurden grob geschätzt 4 x 10<sup>11</sup> Äpfel auf der ganzen Welt geerntet. Wie viel Mol sind das?
* Im Jahr 2018 wurden grob geschätzt 4 x 10<sup>11</sup> Äpfel auf der ganzen Welt geerntet. Wie viel Mol sind das?
{{Lösung versteckt|
{{Lösung versteckt|
 
* Der Wert der angegebenen Masse in g entspricht genau dem Wert, der im PSE links über dem Element steht, also ist das genau die Masse eines Mols Stickstoffatome
* Die Zahl links oberhalb des Kohlenstoffs im PSE lautet 12,000. Das ist die Masse in g, die ein Mol wiegen würde. Zwei Mol müssen dann das doppelte wiegen, also 24,0g.
* Als Hilfe: Das ist eine ähnliche Frage, wie man wissen will: "Wie viele Dutzend sind 7 Eier?". Man muss die tatsächliche Anzahl durch diejenige Anzahl teilen, die in einem Dutzende stecken, also 7 geteilt durch 12. Bei dem Beispiel mit den Äpfeln: 4 x 10<sup>11</sup> geteilt durch 6,022 x 10<sup>23</sup>. Ergibt 6,67 x 10<sup>-13</sup>mol.
|Lösung|Lösung ausblenden}}<br>
|Lösung|Lösung ausblenden}}<br>
|Farbe= #607
|Farbe= #607

Version vom 17. Januar 2021, 11:22 Uhr

Distanzunterricht Montag, 18.01.

In den vorangegangenen Einheiten habt ihr einen historischen Einblick in die Probleme erhalten, die sich beim Arbeiten mit der Masse von Stoffportionen ergeben. Für die weiteren Einheiten sind diese historischen Aspekte erst einmal weniger interessant. Wir wollen in den nächsten eher dahin kommen, dass in der Lage seid, z.B. folgende Aufgaben zu lösen:

"Ein Auto verbraucht pro hundert gefahrene Kilometer im Durchschnitt 5,0L Benzin. Wie viel Gramm Kohlenstoffdioxid wird auf diesem Weg ausgestoßen."

Bis dahin müssen jedoch noch einige geklärt werden und wir fangen heute erst einmal mit kleinen Schritten an.

Wiederholung: Die Bestimmung der absoluten Atommasse

Ihr solltet in der letzten Einheit bemerkt haben, dass die "frühen Chemiker" sehr daran interessiert waren, die Masse von einzelnen Atomen zu bestimmen. Diese Atommasse spielt eine wichtige Rolle bei der Berechnung von Mengeneinheiten, um chemische Reaktionen vollständig durchführen zu können. Nachdem es keine Waage gab, mit der man so kleine Massen bestimmen konnte, behalf man sich mit einer willkürlichen Größe: Die atomare Masseneinheit u wurde eingeführt. Man wusste zwar nicht, wie viel Gramm ein Teilchen wog, welches 1u schwer war, aber man konnte bestimmen wie viel u z.B. ein Sauerstoffatom und wie viel u ein Wasserstoffatom wog. So konnte man die Atome von unterschiedlichen Elementen vergleichen.
Mit Hilfe von Massenspektrometern gelang es irgendwann, für die atomare Masseneinheit u einen Wert in Gramm zu bestimmen, es gilt:

1u = 1,66 x 10-24g

Damit lassen sich nun schon ein paar einfache Aufgaben rechnen. Um zu unterscheiden, ob man von der Masse eines Teilchens in g oder der atomaren Masseneinheit in u spricht, gibt es die zwei Variablen m(X) für die "normale" Masse und ma(X) für die atomare Masseneinheit. X steht dabei für die Teilchen, das man betrachtet. Die folgenden Ausdrücke bedeuten dann folgendes:

m(O-Atom) = 2,658 x 10-23g.

Die Masse eines Sauerstoffatoms beträgt zwei Komma sechs fünf acht mal zehn hoch minus dreiundzwanzig Gramm.



ma(C-Atom) = 12,0u

Die Masse eines Kohlenstoffatoms beträgt zwölf Komma Null u.



Test:
Schreibe als mathematische Gleichung: Misst man die Masse eines Bor-Atoms in atomaren Masseneinheiten, so erhält man 10,811u.



Schreibe als mathematische Gleichung: Die Masse eines Sauerstoff-Moleküls (!) beträgt 5,313 x 10-23g




Mit Hilfe des oben beschriebenen Zusammenhangs zwischen der Masse in g und der atomaren Masseneinheit in u lassen sich die beiden Größen auch leicht ineinander umwandeln:



Berechne die Masse eines Sauerstoffmoleküls in u! (Die Masse in Gramm ist oben bereits angegeben)




Nachdem ein unbekannter Stoff X im Massenspektrometer untersucht wurde, konnte die Masse eines Teilchens dieses Stoffes auf 4,79 x 10-22g bestimmt werden. Rechne diesen Wert in atomare Masseneinheiten um!




Man sollte meinen, nachdem man jetzt die atomare Masseneinheit auch in Gramm bestimmen kann, ist die Angabe in u doch nicht mehr nötig. Es war doch nur eine Hilfsgröße, solange man das Gewicht von Atomen noch nicht direkt bestimmen konnte. Die Einheit hat sich aber gehalten, denn sie ist (unter anderem) in folgendem Punkt ganz praktisch: Sie lässt sich einfacher schreiben! Nehmt an, ihr habt ein Molekül "XYZ", für das gilt: ma(XYZ) = 212,3u und m(XYZ) = 3,5 x 10-24g.
Versucht beide Angaben in einem Word-Dokument zu schreiben! Das geht mit der atomaren Masseneinheit sehr leicht, mit der "normalen" Masse tut man sich deutlich schwerer. Dieses "Zehn hoch irgendwas" ist einfach umständlich.




Molekül- und Formelmassen

Wenn ihr eure Hausaufgabe gemacht habt und das Buch auf den Seiten 34 - 35 gelesen habt, dann wisst ihr schon, dass man die Masse von Molekülen oder die Formelmasse von Salzen, gemessen in der atomaren Masseneinheit u, ganz einfach bestimmen kann, indem man die Masseneinheiten der einzelnen Atome, die am Aufbau des Moleküls oder der Formelmasse beteiligt sind, zusammenzählt. Bsp.: Möchte man die Masse eines Schwefelsäure-Moleküls (H2SO4) wissen (in u), dann addiert man einfach die Masseneinheiten der am Aufbau beteiligten Atome, also: 2 x ma(H) + ma(S) + 4 x ma(O).
Ma H2SO4 Berechnung.jpg

Das leuchtet vermutlich den meisten ein, aber die große Frage ist doch: Woher weiß man die Werte für die einzelnen Atome? - Sie stehen im Periodensystem! Nehmt das Periodensystem im Buch auf der letzten Seite zur Hand. Ihr erkennt im oberen weißen Feld "Erklärungen", dass die Zahl links oberhalb des Elementsymbols die Atommasse in u angibt.
Berechnet nun mit Hilfe des PSEs die Molekülmassen (in u) von:

  • Adrenalin (ein Hormon, welches euer Körper in stressigen Situationen ausschüttet), chem. Formel: C9H13NO3
  • Koffein (ein Stoff in Kaffee oder Cola, der anregend wirkt), chem. Formel: C8H10N4O2
  • Indigo (ein Stoff zum Färben von Jeans), chem. Formel: C16H10N2O2

Adrenalin C9H13NO3:
Ma H2SO4 Berechnung.jpg
Solltet ihr das nicht richtig haben, dann überprüft genau, wo der Fehler lag und rechnet die anderen beiden Stoffe noch einmal nach!

Koffein C8H10N4O2:
Ma H2SO4 Berechnung.jpg

Indigo C16H10N2O2:
Ma H2SO4 Berechnung.jpg



Das Mol

Mit dem nun verfügbaren Atomgewicht könnte man theoretisch schon arbeiten. Betrachten wir noch einmal das Beispiel aus der letzten Einheit. Es ging um die chemische Reaktion: Eisen reagiert mit Schwefel zu Pyrit:

Fe + 2 S --> FeS2

Diese chemische Gleichung sagt aus, dass man doppelt so viele Schwefel-Atome wie Eisenatome braucht, damit alles miteinander reagiert und nichts übrig bleibt. Angenommen ihr habt einen Teelöffel voll Eisenpulver und wollte exakt die Menge Schwefel dazugeben, die nötig ist, um alles vollständig in Pyrit umzuwandeln. Dann könnte man jetzt die Portion Eisen wiegen, mit Hilfe der Atommasse von Eisen ausrechnen, wie viele Atome das sind. Diese Anzahl verdoppeln und dann ausrechnen, welche Masse diese Anzahl an Schwefelatomen hat. Diese Menge könnte man dann abwiegen. Das folgende Bild veranschaulicht den Rechenweg:
FeS2BerechnungohneMol.jpg
Das wirkt noch etwas umständlich...
Bei dieser Berechnung tauchen nämlich wieder sehr große, unhandliche Zahlen auf: Die Anzahl der Teilchen. Diese wird in der Chemie mit einem N(X) gekennzeichnet. Also z.B. kann man den Satz: "In meinem Zimmer liegen 3208 Legosteine auf dem Boden mathematisch so formulieren:

N(Legosteine) = 3208

Weil Atome so klein sind, befinden sich in den 6,0g Eisen einfach unglaublich viele Atome: Die Anzahl beträgt N(Fe) = 6,0 x 1022. Eine Zahl mit dreiundzwanzig Stellen (!), in Worten also ungefähr 600 Trilliarden Atome...
Daher hat man sich etwas einfacheres ausgedacht: Man betrachtet einfach eine sehr große Menge an Teilchen und gibt dieser Anzahl einen bestimmten Namen. Das ist nicht so ungewöhnlich, wie es vielleicht im ersten Moment klingt. Ihr kennt z.B. sicher den Ausdruck "ein Dutzend" für die Anzahl 12. (Wo jetzt genau der Sinn darin liegt zu sagen, "Ich hole beim Bauern ein Dutzend Eier" anstatt "Ich hole beim Bauern zwölf Eier", kann ich euch auch nicht genau sagen. Aber das Phänomen gibt es eben. Fragt mal eure Oma ob sie den Begriff "Schock" noch kennt, für eine Anzahl an z.B. Eiern).
In der Chemie hat man nun den Begriff "Mol" eingeführt. Das ist die Bezeichnung für eine bestimmte Anzahl an Teilchen, nämlich 6,022 x 1023. Man nennt diesen Wert auch Avogadro-Konstante NA = 6,022 x 1023 1/mol

Freiwilliger Test:

  • Besorgt euch eine Stoppuhr oder ruft die Funktion auf eurem Handy auf!
  • Stoppt die Zeit, die ihr benötigt, um zehn mal "Sechs Komma null zwei zwei mal zehn hoch dreiundzwanzig" zu sagen!
  • Stoppt die Zeit, die ihr benötigt, um zehn mal "Ein Mol" zu sagen!

Ergebnis? - Seht ihr, die Einheit "Mol" ist eben praktisch.
Warum jetzt ausgerechnet 6,022 x 1023? - Das ist genialer Schachzug der Chemiker gewesen. Diese Zahl wurde deshalb gewählt, weil dann die im PSE angegebene atomare Masseneinheit genau übereinstimmt mit der Masse in g, die ein Mol dieser Teilchen wiegt.
Nochmal langsam, zum mitschreiben: Die Zahl, die oben links bei den Elementsymbolen im PSE steht, gibt also nicht nur die Masse eines Atoms dieses Elements in u an, sondern gleichzeitig entspricht dieser Wert der Masse in g von einem Mol dieser Atome. - Wahnsinn! Diese Chemiker..., das sind vielleicht Teufelskerle!
Und jetzt wieder ernst: Diese Größe, also die Masse, die ein Mol eines Stoffes in g wiegt, nennt man Molare Masse M(X). Ein Beispiel: "Die molare Masse von Wasser, also diejenige Masse in Gramm, die ein Mol Wassermoleküle wiegen, beträgt 18g/mol." oder in Form einer mathematischen Gleichung: M(H2O) = 18g/mol.
Die Variable, um eine Anzahl in Mol zu messen, nennt man "Stoffmenge", sie wird mit einem kleinen n(X) gekennzeichnet, die Einheit Mol wird abgekürzt mit mol. Wenn man also sagen möchte: "Ich habe heute 2 Mol Erdbeeren gepflückt, dann kann man das so formulieren:
n(Erdbeeren) = 2mol (Dieser Wert ist völlig unrealistisch. So viele Erdbeeren gibt es auf der ganzen Welt nicht) Test:
Wie spricht man die folgende Gleichung aus: n(Sterne im Universum) = 0,1mol (Dieser Wert stimmt ungefähr)? Wie viele Sterne sind das?

  • Die Anzahl der Sterne im Universum beträgt Null Komma Ein Mol.
  • Das sind 6,022 x 1022 oder auch 0,602 x 1023

Schreibe als mathematische Gleichung: In der Sahara gibt es ungefähr Null Komma eins Mol Sandkörner.

Übersicht Größen1.jpg



Einfache Aufgaben

  • Es liegen 14,007g Stickstoffatome vor. Wie viel Mol sind das?
  • Wie viel Gramm wiegen 2 Mol Kohlenstoffatome?
  • Im Jahr 2018 wurden grob geschätzt 4 x 1011 Äpfel auf der ganzen Welt geerntet. Wie viel Mol sind das?
  • Der Wert der angegebenen Masse in g entspricht genau dem Wert, der im PSE links über dem Element steht, also ist das genau die Masse eines Mols Stickstoffatome
  • Die Zahl links oberhalb des Kohlenstoffs im PSE lautet 12,000. Das ist die Masse in g, die ein Mol wiegen würde. Zwei Mol müssen dann das doppelte wiegen, also 24,0g.
  • Als Hilfe: Das ist eine ähnliche Frage, wie man wissen will: "Wie viele Dutzend sind 7 Eier?". Man muss die tatsächliche Anzahl durch diejenige Anzahl teilen, die in einem Dutzende stecken, also 7 geteilt durch 12. Bei dem Beispiel mit den Äpfeln: 4 x 1011 geteilt durch 6,022 x 1023. Ergibt 6,67 x 10-13mol.


Systematische Zusammenfassung

Die einfachen Berechnungen in den oberen Kästen waren mehr so... "freestyle". Viele von euch werden die Aufgaben relativ problemlos lösen können. Manche brauchen aber vielleicht etwas mehr Struktur. Diesen Personen empfehle ich das Buch (S. 35 - 38), die Hefteinträge (s. u.) und ganz knapp zusammengefasst die folgende Übersicht, die die bisher besprochenen Größen und ein paar Gleichungen zum Umrechnen enthält:
Übersicht Größen1.jpg

Auch wenn ihr zu der Gruppe gehört, die glaubt, bereits alles verstanden zu haben, lest ihr bitte als Hausaufgabe im Buch die folgenden Absätze und die Hefteinträge. Die Datei mit den Hefteinträgen haltet ihr bitte morgen Nachmittag bereit. Wir machen eine Videokonferenz und lösen die darin enthaltenen Aufgaben!

  • Die Teilchenzahl (S. 36)
  • Die Stoffmenge (S. 36-37)
  • Teilchenzahl und Stoffmenge (S. 37)
  • Teilchenzahl und Masse (S. 37)
  • Molare Masse und molares Volumen (S. 38)
  • Die molare Masse (S. 38)
  • Hefteinträge zu dieser und letzter Stunde (Punkt 4 wurde noch nicht besprochen): pdf-Datei


Distanzunterricht Donnerstag, 14.01. Chemie

Um 08:15 Uhr findet die BBB-Konferenz statt, um die Anwesenheit zu kontrollieren. Bis dahin macht ihr ab 08:00 Uhr bitte folgendes:
Scrollt auf dieser Seite nach unten bis zum Abschnitt "Distanzlernen für Donnerstag, 17.12.". Wiederholt die dort gestellte Aufgabe im ersten lilafarbenen Block "Bindungsarten". Das sollte in 15min. zu schaffen sein. Startet dann bitte pünktlich die BBB-Konferenz.
Nach der Anwesenheitskontrolle bearbeitet ihr bitte die folgenden Aufgaben alleine. Sollte BBB stabil laufen, können wir das gerne in Form von Gruppenarbeiten mit anschließender Besprechung durchführen. Sollte die Verbindung schlecht sein oder abbrechen, könnt ihr die Aufgaben hier auch alleine bearbeiten. Wechselt um 08:45 Uhr auf jeden Fall zum Biologie-Auftrag!


Wiederholungsaufgaben zu den verschiedenen Bindungstypen

Aufgaben:

  • Salze 1

Formuliere die chemische Gleichung zur Bildung von Natriumoxid aus den Elementen

  • Bestimme die Anzahl an Valenzelektronen von Natrium und Sauerstoff.
  • Leite daraus ab, welche Ionen diese Stoffe bilden werden

Na --> Na+ + e-
O + 2e- --> O2-
(Eine chemische Gleichung ist hier nicht unbedingt nötig, es genügt, wenn ihr die richtigen Ionen ableiten könnt)



  • Aus den Ionen muss sich ein Salz bilden, das insgesamt neutral ist. In welchem Verhältnis müssen sich die Ionen dazu zusammen finden?
  • Wie formuliert man das als chemische Formel?

2 Na+ und 1 O2- Teilchen ergeben insgesamt die chemische Formel Na2O



  • Nun kann man beginnen die chemische Gleichung aufzustellen. Dabei ist darauf zu achten, dass Sauerstoff zur HONClBrIF-Gruppe gehört!
  • Alle Edukte links, Reaktionspfeil, Produkt rechts und ausgleichen bitte!

4 Na + O2- --> 2Na2O



  • Salze 2

Begründe, warum Salze in der Regel einen sehr hohen Siedepunkt haben, Moleküle eher niedrigere!

Eine gute Begründung enthält folgende Aspekte:

  • Man erklärt zunächst, was "Sieden überhaupt bedeutet"!

Beim "Sieden" müssen die Teilchen, aus denen sich ein Stoff zusammensetzt voneinander getrennt werden.


  • Dann kann man darauf eingehen, warum die Siedetemperatur ganz generell unterschiedlich sein kann, wovon sie also allgemein abhängt!

Es kommt auf die Kräfte an, welche die Teilchen zusammenhält.


  • Jetzt kann man konkret werden und auf die hier vorliegenden Unterschiede dieser Kräfte eingehen!

Salze bestehen aus Ionen, die alle geladen sind. Unterschiedlich geladene Teilchen ziehen sich (stark) an, daher haben Metalle im Vergleich zu Molekülen hohe Siedepunkte. Moleküle sind in der Regel nämlich neutral. Sie ziehen Nachbarmoleküle kaum an. Daher lassen sie sich leicht (schon bei geringen Temperaturen) voneinander trennen und der Stoff siedet.
Warum sich Moleküle doch etwas gegenseitig anziehen und manche Moleküle daher schon höhere Siedepunkte besitzen können, besprechen wir demnächst.




  • Moleküle

Zeichnet die Valenzstrichformeln für: CO2, NH3, CH2O, SO3

A6 WH Lsg1 Valenzstrichformeln.jpg

  • Metalle

Begründe, warum Metalle in der Regel sehr gute elektrische Leiter sind!

  • Es bietet sich an, hier zunächst den Aufbau von Metallen zu beschreiben.

Man kann das natürlich auch mit Worten beschreiben, dann sollten auf jeden Fall die Begriffe "positiv geladenene Atomrümpfe" und "frei bewegliches Elektronengas" auftauchen. Eine Skizze sieht so aus:
Metallgitter animiert 1.gif


  • Jetzt stellt man den Zusammenhang mit der elektrischen Leitfähigkeit her!

Elektrisch leitend ist ein Stoff dann, wenn geladene Teilchen durch ihn fließen können. Hier sind frei bewegliche, negativ geladene Elektronen vorhanden. Damit sind alle Bedingungen erfüllt.


Fertig für heute. Wenn ihr Schwierigkeiten bei diesen Aufgaben hattet, findet ihr Überblicksseiten zu den Stoffklassen in eurem Buch Galvani - Chemie S1 auf den S. 102-103, 120-121 und 132,133

Distanzunterricht Freitag, 15.01. Chemie

Bitte bearbeitet die folgende Einheit am besten in der eigentlichen Unterrichtszeit von 08:45 - 09:30 Uhr. Ihr benötigt das Arbeitsblatt, welches ihr vor den Ferien erhalten habt und auf dem die Vorderseite bereits ausgefüllt ist. Solltet ihr das AB nicht mehr finden, könnt ihr es hier noch einmal herunterladen:
pdf-Datei


Energiebeteiligung bei chemischen Reaktionen

Schaut bitte zunächst das folgende Video. Es enthält eine Zusammenfassung der letzten Einheit und erklärt einen neuen Aspekt. Während des Videos solltet ihr auch das AB auf der Rückseite ausfüllen. Nach dem Video bearbeitet bitte die Aufgaben darunter. Lasst euch die Lösung erst anzeigen, wenn ihr tatsächlich eine gefunden habt!


Aufgaben:
Startet man ein Auto, so wird durch das Umdrehen des Schlüssels etwas Energie aus der Batterie in einen elektrischen Funken im Motor umgewandelt, der vergastes Benzin entzünden. Dabei reagiert das Benzin mit Sauerstoff. Wenn der Motor läuft, könnte man die Batterie auch entfernen.

  • Erkläre, ob es sich bei der Verbrennung von Benzin im Motor eines Autos um einen exothermen oder endothermen Vorgang handelt!
  • Zeichne ein Energie-Reaktionsverlaufs-Diagramm, in dem die wichtigen Begriffe aus dem Text der Grafik richtig zugeordnet sind!


Es muss sich um eine exotherme Reaktion handeln. Sie muss nur einmal kurz durch Zufuhr von Aktivierungsenergie gestartet werden. Danach wird ständig Energie (in Form von Wärme oder auch Bewegungsenergie) frei.



ExoEndo ExoDiagramm BenzMotor ML.jpg



Pflanzen können mit Hilfe von Sonnenlicht aus Kohlenstoffdioxid und Wasser die Stoffe Glukose und Sauerstoff herstellen. Bei manchen Unterwasserpflanzen kann man den entstehenden Sauerstoff sehr schön sehen, da er in Form von Gasbläschen aufsteigt. Das funktioniert allerdings nur solange, wie die Unterwasserpflanze mit Licht bestrahlt wird. Verdunkelt man die Pflanze entstehen auch keine Gasblasen mehr.

  • Erkläre, ob es sich bei der Verbrennung von Benzin im Motor eines Autos um einen exothermen oder endothermen Vorgang handelt!
  • Zeichne ein Energie-Reaktionsverlaufs-Diagramm, in dem die wichtigen Begriffe aus dem Text der Grafik richtig zugeordnet sind!


Es muss sich um eine endotherme Reaktion handeln. Nur solange die Pflanze von Licht (Energie) getroffen wird, entstehen die Produkte (zu sehen am aufsteigenden Sauerstoff)



ExoEndo ExoDiagramm FotoSyn ML.jpg



Als Hausaufgabe lest ihr bitte die Seiten 136 - 137 im Buch und bearbeitet die Aufgabe 3 auf der Seite 137: Findet sowohl drei weitere Beispiele für exotherme als auch drei Beispiele für endotherme Reaktionen! Ihr erhaltet um 10:30 Uhr einen Arbeitsauftrag im Schulmanager. Dort gebt ihr bitte eure Vorschläge ab!

Distanzunterricht Donnerstag, 14.01. Chemie

Um 08:15 Uhr findet die BBB-Konferenz statt, um die Anwesenheit zu kontrollieren. Bis dahin macht ihr ab 08:00 Uhr bitte folgendes:
Scrollt auf dieser Seite nach unten bis zum Abschnitt "Distanzlernen für Donnerstag, 17.12.". Wiederholt die dort gestellte Aufgabe im ersten lilafarbenen Block "Bindungsarten". Das sollte in 15min. zu schaffen sein. Startet dann bitte pünktlich die BBB-Konferenz.
Nach der Anwesenheitskontrolle bearbeitet ihr bitte die folgenden Aufgaben alleine. Sollte BBB stabil laufen, können wir das gerne in Form von Gruppenarbeiten mit anschließender Besprechung durchführen. Sollte die Verbindung schlecht sein oder abbrechen, könnt ihr die Aufgaben hier auch alleine bearbeiten. Wechselt um 08:45 Uhr auf jeden Fall zum Biologie-Auftrag!


Wiederholungsaufgaben zu den verschiedenen Bindungstypen

Aufgaben:

  • Salze 1

Formuliere die chemische Gleichung zur Bildung von Natriumoxid aus den Elementen

  • Bestimme die Anzahl an Valenzelektronen von Natrium und Sauerstoff.
  • Leite daraus ab, welche Ionen diese Stoffe bilden werden

Na --> Na+ + e-
O + 2e- --> O2-
(Eine chemische Gleichung ist hier nicht unbedingt nötig, es genügt, wenn ihr die richtigen Ionen ableiten könnt)



  • Aus den Ionen muss sich ein Salz bilden, das insgesamt neutral ist. In welchem Verhältnis müssen sich die Ionen dazu zusammen finden?
  • Wie formuliert man das als chemische Formel?

2 Na+ und 1 O2- Teilchen ergeben insgesamt die chemische Formel Na2O



  • Nun kann man beginnen die chemische Gleichung aufzustellen. Dabei ist darauf zu achten, dass Sauerstoff zur HONClBrIF-Gruppe gehört!
  • Alle Edukte links, Reaktionspfeil, Produkt rechts und ausgleichen bitte!

4 Na + O2- --> 2Na2O



  • Salze 2

Begründe, warum Salze in der Regel einen sehr hohen Siedepunkt haben, Moleküle eher niedrigere!

Eine gute Begründung enthält folgende Aspekte:

  • Man erklärt zunächst, was "Sieden überhaupt bedeutet"!

Beim "Sieden" müssen die Teilchen, aus denen sich ein Stoff zusammensetzt voneinander getrennt werden.


  • Dann kann man darauf eingehen, warum die Siedetemperatur ganz generell unterschiedlich sein kann, wovon sie also allgemein abhängt!

Es kommt auf die Kräfte an, welche die Teilchen zusammenhält.


  • Jetzt kann man konkret werden und auf die hier vorliegenden Unterschiede dieser Kräfte eingehen!

Salze bestehen aus Ionen, die alle geladen sind. Unterschiedlich geladene Teilchen ziehen sich (stark) an, daher haben Metalle im Vergleich zu Molekülen hohe Siedepunkte. Moleküle sind in der Regel nämlich neutral. Sie ziehen Nachbarmoleküle kaum an. Daher lassen sie sich leicht (schon bei geringen Temperaturen) voneinander trennen und der Stoff siedet.
Warum sich Moleküle doch etwas gegenseitig anziehen und manche Moleküle daher schon höhere Siedepunkte besitzen können, besprechen wir demnächst.




  • Moleküle

Zeichnet die Valenzstrichformeln für: CO2, NH3, CH2O, SO3

A6 WH Lsg1 Valenzstrichformeln.jpg

  • Metalle

Begründe, warum Metalle in der Regel sehr gute elektrische Leiter sind!

  • Es bietet sich an, hier zunächst den Aufbau von Metallen zu beschreiben.

Man kann das natürlich auch mit Worten beschreiben, dann sollten auf jeden Fall die Begriffe "positiv geladenene Atomrümpfe" und "frei bewegliches Elektronengas" auftauchen. Eine Skizze sieht so aus:
Metallgitter animiert 1.gif


  • Jetzt stellt man den Zusammenhang mit der elektrischen Leitfähigkeit her!

Elektrisch leitend ist ein Stoff dann, wenn geladene Teilchen durch ihn fließen können. Hier sind frei bewegliche, negativ geladene Elektronen vorhanden. Damit sind alle Bedingungen erfüllt.


Fertig für heute. Wenn ihr Schwierigkeiten bei diesen Aufgaben hattet, findet ihr Überblicksseiten zu den Stoffklassen in eurem Buch Galvani - Chemie S1 auf den S. 102-103, 120-121 und 132,133

Distanzunterricht Donnerstag, 14.01. Bio

Ökologie

In den letzten Stunden vor den Weihnachtsferien ging es um Prozesse, die sich auf molekularer Ebene abspielen. Ihr habt gesehen, wie in den Mitochondrien energiereiches ATP aus Zucker und Sauerstoff hergestellt wird. Das Thema war im Prinzip abgeschlossen und wir machen einen großen Sprung zur Ökologie.
Das Wort ist euch sicher geläufig, die genaue Bedeutung wahrscheinlich nicht unbedingt. Ihr seht unten zwei Videos, die sich mit Grundbegriffen der Ökologie beschäftigen. Die Videos besitzen eine hohe Informationsdichte und sind unter Umständen etwas schnell. Trotzdem sind sie ganz gut gelungen und bieten vielleicht etwas Abwechslung. Es werde euch hier Ausschnitte abgespielt. Auf yt direkt könnt ihr die Videos aber auch ganz anschauen.
Schaut beide Videos und bearbeitet anschließend die Aufgaben darunter!




Aufgaben:
Klickt zunächst auf folgenden Link. Ihr gelangt zu einer Seite, die "Eco-Spheres" verkauft. Ein angeblich ursprünglich von der NASA entwickeltes "Ökosystem" für den Schreibtisch. Lest die Produktinformationen und kehrt dann wieder hierher zurück!
Zur Eco-Sphere

Aufgaben:

  • Wende die soeben gelernten Fachgriffe an und ordnen ihnen die richtigen Objekte aus der Eco-Sphere zu!
  • Was an der Eco-Sphere ist Biotop, was Biozönose?
  • Welche Organismen sind Produzenten, Konsumenten und Reduzenten?
  • Biotop: Glasgefäß, Steinchen, Muschel-Schalen (Das Gefäß enthält keine lebenden Muscheln) Gorgonie, Wasser; Biozönose: grüne Faden- und braune Flächen-Algen, Garnelen, Mikroorganismen
  • Produzenten: grüne Faden- und braune Flächen-Algen, Konsumenten: Garnelen, Reduzenten: Mikroorganismen

Es gibt drei Begriff, die eher aus der Physik stammen und die Wechselwirkung von Systemen mit ihrer Umgebung beschreiben:

  • Offene Systeme

Offen bedeutet, dass SOWOHL Energie mit der Umgebung ausgetauscht werden, ALS AUCH Stoffe

  • Geschlossene Systeme

Bei geschlossenen System kann zwar Energie mit der Umgebung ausgetauscht werden, allerdings keine Stoffe

  • Isolierte Systeme

Isolierte System stehen in überhaupt keinem Austausch mit der Umgebung.

Ökosysteme sind in der Regel offene Systeme. Betrachten wir einen See: Ein im See lebender Frosch könnte den See durchaus verlassen und in den angrenzenden Wald hüpfen und dort Kot absetzen. Damit wären Stoffe aus dem See in die Umgebung gelangt. Umgekehrt könnte auch ein Ente von weit her angeflogen können und Fischeier, die an ihrem Gefieder hingen im See hinterlassen. Damit wären Stoffe in den See aus der Umgebung eingetragen worden.
Auch ein Energieaustausch ist möglich: Wenn die Sonne scheint, können die Sonnen strahlen in den See eindringen und ihn aufheizen. Nachts kann diese Wärme z.B. an die Atmosphäre wieder abgegeben werden.
Beurteile begründet, ob die Eco-Sphere tatsächlich ein Öko-System in diesem Sinne ist.

Ein Energieaustausch ist zwar möglich. Das Glasgefäß lässt ja z.B. Lichtstrahlen ein- und austreten; ein Stoffaustausch ist jedoch mit der Umgebung nicht möglich. Daher ist dieses System geschlossen und unterscheidet sich in diesem Punkt von offenen Ökosystemen in der Natur



Freiwillig:
Vor einigen Jahren versuchte man mit einer Art Gewächshaus die Erde nachzuahmen, um zu testen, ob man in einem geschlossenen System (z.B. auf dem Mars) als Mensch länger überleben könnte. Das Projekt hieß "Biosphäre 2". Wer möchte, kann einen 7min. Film dazu schauen:



Hausaufgabe:
Lest im Buch S. 62 - 63






Wiederholung

Lasst euch das, was wir gestern (Montag) besprochen haben noch einmal kurz durch den Kopf gehen. Ihr könnt dazu auf dieser Seite etwas nach unten scrollen und die Fragen überfliegen, die im letzten Arbeitsauftrag behandelt wurden.
Wie würdet ihr in höchstens drei Sätzen zusammenfassen, was ihr aus dieser letzten Einheit mitgenommen habt?

Möglich wäre z.B.:

  • Ein Schokokuchen ist schon was leckeres...
  • Auf "Vogelhäuschen selber bauen" hätte ich ja gar keinen Bock. Da kauf ich lieber eins.
  • Eine Tonne Äpfel auf einem Anhänger??? Auf den Anhänger von meinem Onkel passen 16 Tonnen!


O.k., das könnten zwar auch Dinge gewesen sein, die euch durch den Kopf gegangen sind, aber jetzt mal in Bezug auf Chemie!

Möglich wäre z.B.:

  • In chemischen Gleichungen spielt die Anzahl von Teilchen (Atomen, Molekülen, Salzeinheiten) eine Rolle
  • Leider kann man solche Teilchen aber nicht abzählen
  • Man müsste die Masse von diesen Teilchen wissen, damit man etwas damit anfangen kann


Ihr sollt heute einen kleinen Versuch durchführen, mit dem man die Masse von kleinen Teilchen ziemlich genau bestimmen kann, auch wenn man sie nicht direkt wiegt. Mit einzelnen Atomen oder Molekülen könnt ihr natürlich nicht arbeiten, daher nehmen wir andere "kleine Teilchen". Ihr benötigt also:

  • Entweder Reiskörner oder trockene Erbsen oder trockene Linsen oder sonst irgendetwas kleines (Reißnägel, Büroklammern etc.)
  • Eine Küchenwaage
  • Geduld


Die Objekte, die ihr euch aussucht, sollten so klein (und leicht) sein, dass eine Küchenwaage "nichts" anzeigt, wenn man eins dieser Objekte darauf legt. Zählt jetzt so viele Teilchen ab (z.B. 100, evtl. aber auch 1000), dass eure Küchenwaage einen "vernünftigen Wert" anzeigt, ich würde empfehlen so um die 10 Gramm.
Ihr könnt auch umgekehrt vorgehen: Wiegt exakt 10,0g ab und bestimmt dann die in dieser Menge enthaltene Anzahl an Objekten.
Berechnet aus diesen beiden Werten (Anzahl und Gewicht) das Gewicht eines Teilchens. Recherchiert dann im Internet ob ihr einen Wert findet, der euer Ergebnis bestätigt (oder auch widerlegt). Wenn ihr Pflanzenteile genommen habt, dann werdet ihr wahrscheinlich sehr schnell auf Wikipedia fündig. Als Suchtipp kann ich euch auch den Begriff "Tausendkornmasse" empfehlen.

Tragt euer Ergebnis in das Padlet ein. Den Link findet ihr im Arbeitsauftrag des Schulmanagers!



Freiwilliger Versuch

Ein freiwilliger Versuch. Ihr benötigt dazu:

  • ein schmale Glas, in das gerade so ein Teelicht passt
  • ein Teelicht
  • ein größeres Gefäß, z.B. Messbecher
  • ein Geschirrtuch (o.ä.)
  • ein Päckchen Backpulver
  • Essig oder besser: Essigessenz


Durchführung:
CO2Schütten V.jpg

  • Entzündet das Teelicht im schmalen Glas
  • Gebt das Backpulver in das große Gefäß und legt das Geschirrtuch bereit
  • Schüttet nun etwa 50 - 100mL Essig auf das Backpulver und bedeckt dann sofort das Gefäß mit dem Geschirrtuch. (Hinweis: Bei dem Versuch entsteht das Gas Kohlenstoffdioxid. Das ist schwerer als Luft und soll im Messbecher bleiben. Durch kleinste Luftverwirbelungen wird es aber aus dem Messbecher gespült. Mit dem Geschirrtuch soll das verhindert werden.
  • Wartet ab, bis die Gasentwicklung nachlässt. Euer Messbecher ist nun randvoll mit Kohlenstoffdioxid (was man aber nicht sehen kann).
  • Zieht nun vorsichtig das Geschirrtuch ab. Und gießt das Kohlenstoffdioxid in das schmale Gefäß mit der Kerze. Achtung: Nicht den Essig in das schmale Gefäß gießen!


Beobachtung/Erklärung:
Da das Gas Kohlenstoffdioxid schwerer als Luft ist, wird es in das schmale Glas "fallen" und dort die Luft verdrängen. Eine Verbrennung ist in reinem Kohlenstoffdioxid nicht möglich. Daher sollte die Kerze erlöschen. Wenn ihr auf "Video" klickt, seht ihr eine Variante, so wie es aussehen sollte.

CO2Schütten V1.gif