M6 5.3 Multiplikation und Division von rationalen Zahlen

Aus RMG-Wiki
Version vom 4. Mai 2021, 08:45 Uhr von Julia Licht (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Box|1=Übung 1|2= Berechne. Überlege erst, welches Vorzeichen das Ergebnis hat. Gib das Vorzeichen und die Zahl ohne Leerzeichen ein. <div class="lueckent…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Übung 1

Berechne. Überlege erst, welches Vorzeichen das Ergebnis hat. Gib das Vorzeichen und die Zahl ohne Leerzeichen ein.

(+2) ⋅ (+3) = +6()
(-2) ⋅ (-3) = +6()
(+2) ⋅ (-3) = -6()
(-2) ⋅ (+3) = -6()


Übung 2

Wir wissen, dass wir bei positiven Zahlen die Klammer und das Vorzeichen weglassen können. Dadurch wird die Rechnung kürzer. Schreibe im Ergebnis nur ein Vorzeichen, wenn es nötig ist. Also bei negativen Zahlen.

2 ⋅ 3 = 6()
-2 ⋅ (-3) = 6()
2 ⋅ (-3) = -6()
-2 ⋅ 3 = -6()


Übung 3

Wir können schon bei natürlichen Zahlen mit der Null rechnen. Die gleichen Regeln gelten für die Multiplikation mit Null bei ganzen Zahlen. Kannst du noch alle? Berechne nachfolgende Aufgaben

4 ⋅ 0 = 0()
0 ⋅ (-123) = 0()
0() ⋅ (-25) = 0


Übung 5

Berechne. Überlege erst, welches Vorzeichen das Ergebnis hat. Gib das Vorzeichen und die Zahl ohne Leerzeichen ein.

(+18) : (+3) = +6()
(-18) : (-3) = +6()
(+18) : (-3) = -6()
(-18) : (+3) = -6()


Übung 6

Wir wissen, dass wir bei positiven Zahlen die Klammer und das Vorzeichen weglassen können. Dadurch wird die Rechnung kürzer. Schreibe im Ergebnis nur ein Vorzeichen, wenn es nötig ist. Also bei negativen Zahlen.

18 : 3 = 6()
-18 : (-3) = 6()
18 : (-3) = -6()
-18 : 3 = -6()


Übung 7

Wir können schon bei natürlichen Zahlen mit der Null rechnen. Die gleichen Regeln gelten für die Division mit Null bei ganzen Zahlen. Kannst du noch alle? Berechne nachfolgende Aufgaben. Wenn die Aufgabe nicht lösbar ist, schreibe "x".

0 : 4 = 0()
4 : 0 = x()
0() : 6 = 0
0 : 0 = x()


freiwillige Übung


freiwillige Übung2


Überprüfen

Das sollst du nun anhand von einigen Beispielen überprüfen. Denke daran, die Vozeichen ohne Leerzeichen der Zahl voranzustellen. Dabei musst du nur Minus notieren.

Kommutativgesetz:
(-8) ⋅ 3 = -24()
3 ⋅ (-8) = -24()
(-25) ⋅ 4 = -100()
4 ⋅ (-25) = -100()
(-8) ⋅ (-125) = 1000()
(-125) ⋅ (-8) = 1000()

Assoziativgesetz:
((-4)⋅ (-2)) ⋅ (-125) = -1000()
(-4)⋅ ((-2) ⋅ (-125)) = -1000()
Oder man darf alle Klammern entfernen:
(-4)⋅ (-2) ⋅ (-125) = -1000()

(13 ⋅ (-2)) ⋅ (-5) = 130()
13 ⋅ ((-2) ⋅ (-5)) = 130()

(17 ⋅ (-6)) ⋅ 5 = -510()
17 ⋅ ((-6) ⋅ 5) = -510()


Übung 1

Rechne vorteilhaft im Kopf!

a) (-6) ⋅ 25 ⋅ (-4) = 600()
b) (-50) ⋅ (-134) ⋅ (-2) = -13400()
c) 8 ⋅ 17 ⋅ (-125) = -17000()

Nur für den Notfall:
a) 600; b) -13400; c) -17000


Übung 2

Ergänze die fehlende Zahl!

a) (-15) ⋅ (2 ⋅ 3()) = -90
b) (-8) ⋅ 25() ⋅ (-4) = 800
c) 13 ⋅ (-7) + 91() = 0
d) (-50 + 50()) ⋅ (-2) = 0
e) (-2)³ + 3() ⋅ (-9) = -35

Nur für den Notfall:

a) 3
b) 25
c) 91
d) 50, denn in der Klammer muss die Summer 0 sein

e) 3, denn (-2)³ = -8