Benutzer:Thomas Lux/Test Q11-Struktur

Aus RMG-Wiki

Distanzunterricht Dienstag, 02.02.

Verbessert gegenseitig eure Hausaufgabe (Buch, S. 42 - Aufgabe 6):

  • Findet einen Partner, mit dem ihr zusammenarbeiten wollt. Wenn ihr keinen findet, könnt ihr eure Hausaufgabe auch alleine verbessern.
  • Besorgt euch einen Rotstift.
  • Macht ein Foto von eurer Hausaufgabe und schickt sie an eure Korrekturpartnerin bzw. euren Korrekturpartner.
  • Druckt dann diese Lösungen, die ihr jetzt erhalten habt, aus. (Wenn ihr euch selbst korrigiert ist das natürlich nicht nötig)
  • Solltet ihr keinen Drucker haben, könnt ihr das Foto auch in z.B. Powerpoint/Paint einfügen und dann mit dem Mauszeiger etwas hineinmalen.
  • Beachtet dann die unten stehende Musterlösung und vergleicht mit der Lösung, die vor euch liegt. Verbessert mit roter Farbe die Fehler.
  • Schickt eurem Korrekturpartner die Arbeit zurück (z.B. wieder ein Foto davon).
  • Wenn ihr euch nicht selbst korrigiert habt, dürft ihr jetzt in grün die Korrektur korrigieren - sofern die Korrektur falsch ist oder ihr euch ungerecht behandelt fühlt.
  • Ihr erhaltet ca. um 13:30 Uhr einen Arbeitsauftrag über den Schulmanager. Als Antwort auf diesen Arbeitsauftrag schickt ihr mir eure (doppelt) korrigierte Lösung zurück.


Lösungsvorschlag für die Hausaufgabe

Distanzunterricht Montag, 01.02.

Ihr benötigt euer Buch auf der S. 42. Geht zum Lösen der Aufgabe systematisch vor, wie wir es in den letzten Einheiten immer geübt haben:

  • Überlegt zunächst welche Größe gesucht ist!
  • Überlegt euch dann, welche Größen gegeben sind! (Achtet darauf, dass Konstanten, wie z.B. NA immer gegeben sind oder sich die molare Masse M(X) bzw. die Masse von Teilchen in u ma(X) sich jederzeit aus dem Periodensystem "ablesen" lassen)
  • Wenn ihr eine passende Gleichung gefunden habt, in der die verfügbaren bzw. gesuchten Größen vorhanden sind, formt sie entsprechend eurer gesuchten Größe um!
  • Oft hat man in den Aufgabenstellungen zwar Größen gegeben, die zum Lösen einer passenden Gleichung nötig sind, aber sie stammen nicht vom selben Stoff. Beispiel: Man möchte die Masse eines benötigten Stoffes ausrechnen, dazu benötigt man z.B. seine Molare Masse M(X) und die Stoffmenge n(X). In der Aufgabe ist aber vielleicht nur die Stoffmenge des Reaktionspartners oder seine verfügbare Masse gegen. - Die Lösung besteht oft darin, sich über die chemische Gleichung das Verhältnis der Stoffmengen abzuleiten, also z.B. n(Stoff A) = 4x n(Stoff B).
  • Klickt erst auf "Lösung, wenn ihr tatsächlich den Tipp umgesetzt habt und etwas auf dem Papier stehen habt"


Tipps zur Lösung

Aufgabe 2:

Tipp 1: Legt fest, welche Größe gesucht ist, welche Größen euch gegeben sind, und stellt die chemische Gleichung auf!

C9NTG chemR A422 ML S1.jpg



Tipp 2: Findet eine Gleichung, in der die gesuchte Größe vorkommt und löst sie nach dieser Größe auf! Ihr solltet erkennen, dass in dieser Gleichung eine weitere Größe auftaucht, die nicht gegeben ist. Findet auch für diese Größe eine Gleichung und löst sie entsprechend auf!

C9NTG chemR A422 ML S2.jpg



Tipp 3: Ein letztes Problem muss noch gelöst werden. Ihr könntet jetzt schon die Stoffmenge von Aluminium n(Al) ausrechnen, ihr braucht aber die Stoffmenge von n(O2). Den Zusammenhang zwischen diesen beiden Größen leitet man aus der chemischen Gleichung ab. Bisher war das immer sehr einfach, bei dieser Gleichung ist es nur einfach: Es funktioniert über die Verwendung eines Bruchs. Beispiel: Wenn ihr 1000 Kirschen erntet, dann braucht ihr noch 3 Zitronen und daraus kann Oma dann 9 Gläser Kirschmarmelade machen. Daraus lassen sich folgende Verhältnisse ableiten:
C9NTG chemR A422 ML S3z.jpg
Findet nach genau dem selben Muster nun anhand der chemischen Gleichung einen Zusammenhang zwischen n(Al) und n(O2)!

C9NTG chemR A422 ML S3.jpg




Tipp 4: Man kann nun die Stoffmenge von Aluminium ausrechnen (2. Gleichung), dann in die 3. Gleichung einsetzen, um n(O2) auszurechnen und dieses Ergebnis schließlich in Gleichung 1 einsetzen. Voilà! (wie der Franzose sagt... Habt ihr Französisch? - Ich nicht.)

C9NTG chemR A422 ML S4.jpg



Aufgabe 3:

Tipp 1: Legt fest, welche Größe gesucht ist, welche Größen euch gegeben sind, und stellt die chemische Gleichung auf!

C9NTG chemR A423 ML S1.jpg
Es sind hier zwei Größen verlangt, also auch zwei Rechnungen. Beginnt zunächst mit der Berechnung von m(NaCl)



Tipp 2: Ihr benötigt wieder eine Gleichung, in der die gesuchte Größe steckt und alle anderen gegeben oder berechenbar sind. Beachtet: Auch wenn die Stoffmenge von dem gesuchten Stoff nicht gegeben ist, kann man über das Stoffmengenverhältnis der chemischen Gleichung immer eine Beziehung herstellen!

C9NTG chemR A423 ML S2.jpg



Tipp 3: Eigentlich habt ihr alles, was ihr braucht! Berechnet zunächst n(Na). Über das Stoffmengenverhältnis gelangt ihr zu n(NaCl) und über die erste Gleichung zur gesuchten Masse m(NaCl)

C9NTG chemR A423 ML S3.jpg




Tipp 4: Zur zweiten gesuchten Größe: Findet eine Formel, in der die gesuchte Größe vorkommt und alle anderen Größen gegeben sind. Beachtet, dass ihr bei den vorangegangenen Rechnungen eine wichtige Größe bereits berechnet habt. Die dürft ihr jetzt natürlich verwenden und müsst sie nicht neu ausrechnen!

C9NTG chemR A423 ML S4.jpg



Aufgabe 9:

Tipp 1: Diesmal etwas weniger kleinschrittig: Gesuchte Größe? Gegebene Größen? Chemische Gleichung? Gleichungen?

C9NTG chemR A429 ML S1.jpg



Tipp 2: Ausrechnen, Einsetzen, Einsetzen, Ausrechnen!

C9NTG chemR A429 ML S2.jpg



Ich hoffe, die Tipps haben geholfen, die Aufgaben zu lösen. Macht jetzt die Aufgabe 6 ohne Tipps (einer vielleicht: Eisen(III)-chlorid hat die chemische Formel FeCl3). - Eure Lösung müsst ihr morgen (Dienstag, 02.02.) einem Partner schicken und korrigieren lassen (ähnlich wie letzte Woche). Eine Musterlösung dazu wird morgen hier erscheinen. Ihr selbst müsst dann wieder die Korrektur überprüfen und von der doppelt korrigierten Version schickt ihr mir ein Foto oder eine pdf-Datei.

Arbeitsauftrag 27.04.

Für diesen Arbeitsauftrag solltet ihr ca. 30 Minuten benötigen.


Säure-Base-Reaktionen
Das nächste Kapitel beschäftigt sich den Stoffgruppen der "Säuren" und deren Gegenspielern, den "Basen".
Einstieg/Wiederholung

Versucht im folgenden Bild möglichst genau zu beschreiben, was die eingekringelten Symbole bedeuten sollen. (In beiden Fällen wird das gleiche symbolisiert, es sind nur unterschiedliche Varianten.) In eurer Beschreibung sollte der Begriff "Elektronegativität (EN)" vorkommen.
SäBa1 polAtombdg Darstellung.jpg
Am besten macht ihr das wirklich schriftlich, damit ihr eure Lösung mit der hier angegebenen nachträglich gut überprüfen könnt!

Die eingekreisten Symbole stehen für eine "polare Atombindung".
Beide Begriffe, polar und Atombindung, sollte man nun erklären.
Eine Atombindung entsteht, wenn zwei Atome jeweils ein Elektron zur Verfügung stellen und dieses Elektronenpaar sich zwischen den beiden Atomkernen aufhalten kann und dadurch zu einer Anziehung der beiden Partner führt.
Polar sind Atombindungen dann, wenn einer der beiden Bindungspartner in der Lage ist, das bindende Elektronenpaar stärker zu sich zu ziehen. Die beiden Elektronen haben dann eine hohe Aufenthaltswahrscheinlichkeit nicht genau in der Mitte zwischen den Atomkernen sondern bei dem Bindungspartner, der die höhere Elektronegativität (EN) hat. Der Keil, bzw. der Pfeil zeigen diese Verschiebung des Elektronenpaars hin zum elektronegativeren Partner an.




Betrachten wir zum Vergleich ein Wasserstoff-Molekül, also zwei Wasserstoffatome, die über ein bindendes Elektronenpaar miteinander verbunden sind. Diese Bindung ist nicht polar, weil beide H-Atome "gleich stark am bindenden Elektronenpaar ziehen". Zwei solche Wasserstoff-Atome würden sich bei Raumtemperatur nicht spontan voneinander trennen. Die Atombindung ist zu stark. Bei polaren Atombindungen gibt es jedoch Situationen, in denen das anders aussieht. Vor allem, wenn der eine Bindungspartner Wasserstoff ist. Bleiben wir bei dem am Anfang dargestellten Molekül "Hydrogenchlorid" (HCl). Hier lassen sich die beiden Partner sehr leicht voneinander trennen. Warum?
Bevor diese Frage beantwortet wird, vorher wieder etwas zum Auffrischen:

  • Wie viele Elektronen besitzt ein einzelnes Chlor-Atom insgesamt?
  • Wie viele davon sind Valenzelektronen?
  • Was muss passieren, damit dieses Chlor-Atom Edelgaskonfiguration erreicht?
  • Wie viele Elektronen besitzt ein einzelnes Wasserstoff-Atom insgesamt?
  • Wie viele davon sind Valenzelektronen?
  • Was muss passieren, damit Wasserstoff-Atom Edelgaskonfiguration erreicht?
  • Wirklich? Keine zweite Möglichkeit?



  • Ein Chlor-Atom besitzt insgesamt 17 Elektronen
  • Sieben davon sitzen auf der äußersten Schale, sind also Valenzelektronen
  • Chlor muss ein Elektron aufnehmen
  • Ein Wasserstoff-Atom besitzt ein Elektron
  • ...sehr witzig...
  • Es muss eins aufnehmen, um die Edelgas-Konfiguration von Helium zu erreichen (Zwei Elektronen auf der innersten Schale, die damit voll besetzt ist und einen sehr energiearmen Zustand darstellt)
  • Das haben wir noch nicht besprochen: Wasserstoff könnte das eine Elektron auch abgeben. Dann hat es überhaupt keins mehr. Vom Wasserstoffatom bliebe dann nur das eine Proton im Kern übrig. Das ist zwar keine klassische Edelgaskonfiguration, aber dennoch auch ein sehr energiearmer Zustand.



Die folgende Aussage ist "anthropomorph". Das bedeutet, man tut so, als wären die betrachteten Teilchen Lebewesen/Menschen mit Gefühlen und Bedürfnissen. Das ist natürlich nicht so! Solche Aussagen sind aber oft sehr leicht verständlich für Schülerinnen und Schüler. Ich werde die Aussage erst später fachwissenschaftlich umformulieren.
O.k., schauen wir uns die Situation mal an: Wir haben zwei Atome, ein Wasserstoff-Atom und ein Chlor-Atom. Beide teilen sich ein Elektronenpaar und bilden daher ein Molekül. Das Chlor-Atom ist unglaublich scharf auf das Elektronenpaar. Wenn es beide Elektronen komplett haben könnte, hätte es Edelgaskonfiguration. Das Wasserstoff-Atom könnte mit beiden Elektronen zwar auch etwas anfangen, ist aber auch glücklich, wenn es überhaupt kein Elektron mehr hat.
WAS WIRD WOHL PASSIEREN?
Wer keine Ahnung hat, was das soll, vielleicht noch ein anderes Beispiel: Ihr habt ein kleines Geschwister. Das hat zum Geburtstag ein Playmobil-Pferd geschenkt bekommen. Ihr habt den passenden Playmobil-Cowboy dazu, den ihr irgendwie ganz witzig findet, aber mal ehrlich... ihr seid quasi erwachsen, was wollt ihr mit einem Plastik-Cowboy. Euer kleines Geschwister kommt permanent zu euch ins Zimmer, hängt bei euch rum und will mit euch und eurem Playmobil-Cowboy spielen. Eine Zeit lang macht euch das auch Spaß und ihr seid dabei. Aber plötzlich klingelt euer Handy und euer... bester Freund/beste Freundin ist dran. WAS MACHT IHR WOHL? - Vermutlich: Ihr schenkt euren Playmobil-Cowboy eurem Geschwister und schickt ihn aus dem Zimmer. Übertragt das jetzt auf die Atome!

Das bindende Elektronenpaar (Playmobil-Pferd + Playmobil-Cowboy) wird komplett auf das Chlor-Atom (euer Geschwister) übertragen. Es entsteht ein positiv geladenes Wasserstoff-Teilchen (vorher: ein positiv geladenes Proton im Kern, ein negatives Elektron in der Hülle; jetzt; nur noch ein Proton) und ein negativ geladenes Chlor-Teilchen (vorher: 17 Protonen im Kern, 17 Elektronen in der Hülle; jetzt: 17 Protonen im Kern, 18 Elektronen in der Hülle.
SäBa1 heterolytBdgTrennung.jpg



Man spricht in so einem Fall von einer heterolytischen Bindungstrennung. "Bindungstrennung" bedeutet, dass eine Bindung getrennt wird (ziemlich logisch...) und "hetero"(lytisch) bedeutet, dass die Bindung (bzw. besser: das bindende Elektronenpaar) "ungleichmäßig" aufgeteilt wird. Es gibt auch die "homolytische Bindungstrennung", bei der wird die Bindung so aufgeteilt, dass jeder Partner ein Elektron des bindenden Paares bekommt. Das ist hier aber nicht so: Das Wasserstoff-Atom bekommt gar kein, das Chlor-Atom beide. Deswegen: heterolytische Bindungstrennung.
Die Abspaltung eines Wasserstoffteilchens nach diesem Muster ist etwas, was viele Moleküle können (wenn ein passender Reaktionspartner zur Verfügung steht). Man zählt solche Moleküle zur Gruppe der "Säuren". Wenn z.B. etwas "sauer" schmeckt, dann sicher deswegen, weil eine Säure enthalten ist, also ein Molekül, das durch heterolytische Bindungstrennung ein Proton (das was vom Wasserstoffteilchen nach der Abspaltung übrig bleibt) abgespalten hat.
Man kann diese Abspaltung als chemische Gleichung formulieren:
SäBa1 heterolytBdgTrennung Gleichung.jpg
Stellt nach dem gleichen Muster die chemischen Gleichungen (beide Varianten: mit und ohne Valenzstrichformel) für die heterolytische Bindungstrennung für folgende Säure-Moleküle auf:

  • Hydrogenfluorid (HF)
  • Iodsäure (HIO3)
  • Schwefelsäure (H2SO4)

SäBa1 Aufgabe1 chemGl Heterolyse.jpg


SäBa1 Aufgabe1 chemGl Heterolyse ML1.jpg
Vielleicht habt ihr bei der Schwefelsäure das andere Proton abgespalten. Das funktioniert. Es können sogar beide Wasserstoff-Teilchen gleichzeitig abgespalten werden. Stellt dafür (sofern ihr es noch nicht getan habt) die Gleichungen (mit und ohne Valenzstrichformeln) auf!


SäBa1 Aufgabe1 chemGl Heterolyse ML2.jpg




Hausaufgabe

Das Buch geht hier anders vor, deswegen keine Seiten im Buch lesen. Eher etwas praktisches als "Hausaufgabe":
Pflicht: Sucht bei euch zu Hause drei völlig verschiedene Lebensmittel, die sauer sind (mit "völlig verschieden" meine ich, dass ihr nicht so etwas findet wie "Äpfel" und "Birnen").

Freiwillig: Versucht zu recherchieren, welches Molekül für den sauren Geschmack des Lebensmittels verantwortlich ist!