Benutzer:Thomas Lux/Test Q11-Struktur: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 296: | Zeile 296: | ||
<br> | <br> | ||
{{Box-spezial | {{Box-spezial | ||
|Titel=<span style="color:#00F">'''Ritualisierung'''</span> | |Titel=<span style="color:#00F">'''Kommunikation und Ritualisierung'''</span> | ||
|Inhalt= | |Inhalt= | ||
Wenn ihr den Hefteintrag bereits gelesen habt, ist euch sicher aufgefallen, dass einige Aspekte in der Unterrichtseinheit zum Thema '''"Kommunikation"''' noch nicht angesprochen wurden. Das soll heute nachgeholt werden. <br> | Wenn ihr den Hefteintrag bereits gelesen habt, ist euch sicher aufgefallen, dass einige Aspekte in der Unterrichtseinheit zum Thema '''"Kommunikation"''' noch nicht angesprochen wurden. Das soll heute nachgeholt werden. <br> | ||
Zeile 314: | Zeile 314: | ||
<br> | <br> | ||
{{Box-spezial | {{Box-spezial | ||
|Titel=<span style="color:#00F">'''Ausdrucksverhalten'''</span> | |Titel=<span style="color:#00F">'''Ausdrucksverhalten und Ritualisierung'''</span> | ||
|Inhalt= | |Inhalt= | ||
Der Unterschied zwischen Ausdrucksverhalten und anderen Verhaltensweisen liegt also im Signalcharakter. Noch einmal zur Verdeutlichung: <br> | Der Unterschied zwischen Ausdrucksverhalten und anderen Verhaltensweisen liegt also im Signalcharakter. Noch einmal zur Verdeutlichung: <br> | ||
Zeile 339: | Zeile 339: | ||
<br> | <br> | ||
{{Box-spezial | {{Box-spezial | ||
|Titel=<span style="color:#00F">''' | |Titel=<span style="color:#00F">'''Beispiel-Aufgabe 1'''</span> | ||
|Inhalt= | |Inhalt= | ||
'' | ''Während der Balzzeit führt der Auerhahn ein sehr auffälliges Schauspiel auf: Mit aufgefächerten, steil aufgerichteten Schwanzfedern und hoch gerecktem Kopf betritt er eine Lichtung im Wald. Dort kann man des Balzgesang hören. Dieser besteht aus rhythmischem Klappern mit dem Schnabel, dem Trillern und verschiedenen weiteren Elementen. Insgesamt dauert eine Einheit etwa sechs Sekunden. Interpretieren Sie dieses Verhalten aus ethologischer Sicht!'' | ||
|Farbe= #00F | |Farbe= #00F | ||
|Rahmen= 0 | |Rahmen= 0 | ||
Zeile 350: | Zeile 349: | ||
<br> | <br> | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Wie immer bei dieser Aufgabenstellung solltet ihr die folgenden drei Punkte abarbeiten: <br> | Wie immer bei dieser Aufgabenstellung solltet ihr die folgenden drei Punkte abarbeiten: <br> | ||
'''Identifikation des Verhaltens + Fachbegriff:''' Es handelt sich beim Balzverhalten des Auerhuhns um ein '''ritualisiertes Verhalten''': <br> | '''Identifikation des Verhaltens + Fachbegriff:''' Es handelt sich beim Balzverhalten des Auerhuhns um ein '''ritualisiertes Verhalten''': <br> | ||
'''Definition:''' Ein Verhalten, das ursprünglich einem anderen Bedeutungskreis zugeordnet war, wird nun als Signal zur Kommunikation eingesetzt. Häufig werden dabei Verhaltenselemente stark vereinfacht oder auch übertrieben, mit auffälligen Körpermerkmalen unterstützt, rhythmisch wiederholt, teilweise aber auch ausgelassen.<br> | |||
}} | '''Zuordnung von Textstellen des konkreten Beispiels zu den allgemeinen Begriffen der Definition:''' Ursprünglich könnte das Auffächern und Aufrichten der Schwanzfedern aus dem Bereich des Aggressionsverhaltens stammen. Die Vergrößerung der Körperumrisse ist dort typisch. Nun ist diese Verhalten einzig als Signal zur Kommunikation mit Weibchen umfunktioniert. Es signalisiert Paarungsbereitschaft. Typisch für ritualisiertes Verhalten ist hier das rhythmische Klappern mit dem Schnabel. | ||
|Lösung|Lösung verbergen}} | |||
< | {{Box-spezial | ||
|Titel=<span style="color:#00F">'''Beispiel-Aufgabe 2'''</span> | |||
|Inhalt= | |||
Ein weiteres Beispiel: In eurem Buch ist anhand verschiedener Fasan-Arten die Entwicklung von einem einfachen Balzverhalten hin zu einem komplexen Balzverhalten im Sinne einer Ritualisierung schön beschrieben. | Ein weiteres Beispiel: In eurem Buch ist anhand verschiedener Fasan-Arten die Entwicklung von einem einfachen Balzverhalten hin zu einem komplexen Balzverhalten im Sinne einer Ritualisierung schön beschrieben. | ||
* Lest zunächst im blauen Kasten Zettelkasten "Ritualisierung" auf S. 124 '''nur den ersten Absatz'''. | * Lest zunächst im blauen Kasten Zettelkasten "Ritualisierung" auf S. 124 '''nur den ersten Absatz'''. | ||
* Eine Aufgabe zu diesem Textabschnitt könnte lauten: Interpretieren Sie diese Verhaltensweisen im Sinne einer Ritualisierung! | * Eine Aufgabe zu diesem Textabschnitt könnte lauten: Interpretieren Sie diese Verhaltensweisen im Sinne einer Ritualisierung! | ||
* Die Lösung für eine derartige Aufgabe wäre dann der zweite Absatz des Zettelkastens. Lest diesen jetzt! | * Die Lösung für eine derartige Aufgabe wäre dann der zweite Absatz des Zettelkastens. Lest diesen jetzt! | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Ritualisierung beim Menschen'''</span> | ||
|Inhalt= | |||
Auch der Mensch zeigt etliche ritualisierte Verhaltensweisen bei der Partnerfindung. Sucht konkrete Beispiele! | Auch der Mensch zeigt etliche ritualisierte Verhaltensweisen bei der Partnerfindung. Sucht konkrete Beispiele! | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
z.B.: Manche Jungs lassen vor der Disko den Motor ihres Autos aufheulen. "Vollgas geben" macht auf einem Parkplatz keinen Sinn. Ein ursprünglich aus einem anderen Funktionskreis stammendes Verhalten hat jetzt nur noch Signalcharakter zur Kommunikation im Sinne von "Ich-bin-bereit-zur-Paarung". | z.B.: Manche Jungs lassen vor der Disko den Motor ihres Autos aufheulen. "Vollgas geben" macht auf einem Parkplatz keinen Sinn. Ein ursprünglich aus einem anderen Funktionskreis stammendes Verhalten hat jetzt nur noch Signalcharakter zur Kommunikation im Sinne von "Ich-bin-bereit-zur-Paarung". | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Ritualisierung beim Menschen'''</span> | ||
|Inhalt= | |||
Ein letzter Punkt: Manche ritualisierten Verhaltensweisen dienen der Festigung sozialer Bindungen. Bsp.: "Küssen". Einige Forscher glauben, diese Verhaltensweise diente ursprünglich dem Übertragen von Nahrung. Tatsächlich kommt das sehr oft bei Vögeln vor, wenn Elterntiere ihre Jungen füttern. Beim Tukan auch zwischen den erwachsenen Tieren selbst. Auch bei einem noch sehr ursprünglich lebenden Naturvolk auf Neuguinea kaut die Mutter harte Nahrung vor, bevor sie diese von Mund zu Mund ihrem Kind übergibt. Schimpansen zeigen ein dem "menschlichen Küssen" ganz ähnliches Verhalten. Heute wird beim Küssen (in der Regel) keine Nahrung mehr übergeben. Es ist lediglich ein Signal im Sinne der Kommunikation für die Information "Ich mag Dich".<br> | Ein letzter Punkt: Manche ritualisierten Verhaltensweisen dienen der Festigung sozialer Bindungen. Bsp.: "Küssen". Einige Forscher glauben, diese Verhaltensweise diente ursprünglich dem Übertragen von Nahrung. Tatsächlich kommt das sehr oft bei Vögeln vor, wenn Elterntiere ihre Jungen füttern. Beim Tukan auch zwischen den erwachsenen Tieren selbst. Auch bei einem noch sehr ursprünglich lebenden Naturvolk auf Neuguinea kaut die Mutter harte Nahrung vor, bevor sie diese von Mund zu Mund ihrem Kind übergibt. Schimpansen zeigen ein dem "menschlichen Küssen" ganz ähnliches Verhalten. Heute wird beim Küssen (in der Regel) keine Nahrung mehr übergeben. Es ist lediglich ein Signal im Sinne der Kommunikation für die Information "Ich mag Dich".<br> | ||
"Streicheln" könnte ebenso ein ritualisiertes Verhalten zur Festigung sozialer Bindung sein. Auch ohne sexuelle Komponente: Z.B. wenn eine Person traurig ist, kann durch das "in-den-Arm-nehmen" oder "über-den-Kopf-streichen" Trost gespendet werden. Evtl. könnte dieses Verhalten vom "Sich-gegenseitig-Parasiten-aus-dem-Fell-picken" abstammen. Tatsächlich lausen sich bestimmte Affenarten auch dann gegenseitig, obwohl überhaupt keine Parasiten vorhanden sind. Auch hier könnte das Signal im Sinne der Kommunikation bedeuten "Ich mag Dich", "Ich stehe Dir bei" usw. | "Streicheln" könnte ebenso ein ritualisiertes Verhalten zur Festigung sozialer Bindung sein. Auch ohne sexuelle Komponente: Z.B. wenn eine Person traurig ist, kann durch das "in-den-Arm-nehmen" oder "über-den-Kopf-streichen" Trost gespendet werden. Evtl. könnte dieses Verhalten vom "Sich-gegenseitig-Parasiten-aus-dem-Fell-picken" abstammen. Tatsächlich lausen sich bestimmte Affenarten auch dann gegenseitig, obwohl überhaupt keine Parasiten vorhanden sind. Auch hier könnte das Signal im Sinne der Kommunikation bedeuten "Ich mag Dich", "Ich stehe Dir bei" usw. | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Leben in der Gruppe'''</span> | |||
|Inhalt= | |||
<span style="color:# | |||
Viele Tiere leben '''solitär''' (alleine) und kommen nur zur Paarung mit einem Partner zusammen. Andere dagegen bilden '''Gruppen'''. In der letzten Einheit ging es u. a. um die verschiedenen Formen des Zusammenhalts in solchen Gruppen. Manchmal ist der eher locker, manchmal aber auch sehr eng. In dieser Einheit geht es um eher theoretische Modelle zur '''Gruppengröße'''. | Viele Tiere leben '''solitär''' (alleine) und kommen nur zur Paarung mit einem Partner zusammen. Andere dagegen bilden '''Gruppen'''. In der letzten Einheit ging es u. a. um die verschiedenen Formen des Zusammenhalts in solchen Gruppen. Manchmal ist der eher locker, manchmal aber auch sehr eng. In dieser Einheit geht es um eher theoretische Modelle zur '''Gruppengröße'''. | ||
* Lest die Seiten 116 - 119! | * Lest die Seiten 116 - 119! | ||
* Interpretiert die Grafiken im Buch S. 116 (linke Randspalte, drei Grafiken)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | * Interpretiert die Grafiken im Buch S. 116 (linke Randspalte, drei Grafiken)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafik:''' Die Grafiken zeigen sowohl die Häufigkeiten von Störungen und die Häufigkeiten von Angriffen durch Räuber als auch die Menge gefressener Jungtiere bei Zwergmangusten, einmal in Gruppen mit weniger als 5 Tieren und einmal in Gruppen mit mehr als 5 Tieren. <br> | '''Beschreibung der Grafik:''' Die Grafiken zeigen sowohl die Häufigkeiten von Störungen und die Häufigkeiten von Angriffen durch Räuber als auch die Menge gefressener Jungtiere bei Zwergmangusten, einmal in Gruppen mit weniger als 5 Tieren und einmal in Gruppen mit mehr als 5 Tieren. <br> | ||
'''Beschreibung des Verlaufs:'''Störungen treten in beiden Gruppengrößen gleich häufig auf, Angriffe erfolgen auf Gruppen mit mehr als 5 Tieren deutlich seltener. In großen Gruppen werden keine Jungtiere von Räubern gefressen.<br> | '''Beschreibung des Verlaufs:'''Störungen treten in beiden Gruppengrößen gleich häufig auf, Angriffe erfolgen auf Gruppen mit mehr als 5 Tieren deutlich seltener. In großen Gruppen werden keine Jungtiere von Räubern gefressen.<br> | ||
'''Erklärung des Zusammenhangs:''' ''Im Wesentlichen kann man hier den Text im Schulbuch zusammenfassen.'' In großen Gruppen gibt es mehr "Wächter", die die anderen in der Gruppe vor einem Angreifer warnen können. Damit sind Räuber quasi nicht mehr erfolgreich. | '''Erklärung des Zusammenhangs:''' ''Im Wesentlichen kann man hier den Text im Schulbuch zusammenfassen.'' In großen Gruppen gibt es mehr "Wächter", die die anderen in der Gruppe vor einem Angreifer warnen können. Damit sind Räuber quasi nicht mehr erfolgreich. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
|Titel= | |||
|Inhalt= | |||
* Interpretiert die Abbildung 2 im Buch auf der S. 118 (Haussperling)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | * Interpretiert die Abbildung 2 im Buch auf der S. 118 (Haussperling)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafik:''' Die Grafik zeigt die Rate des schnellen Umblickens in Abhängigkeit von der Schwarmgröße bei Haussperlingen. <br> | '''Beschreibung der Grafik:''' Die Grafik zeigt die Rate des schnellen Umblickens in Abhängigkeit von der Schwarmgröße bei Haussperlingen. <br> | ||
'''Beschreibung des Verlaufs:''' Je größer der Schwarm, desto seltener blicken die Vögel um (Das klickt irgendwie etwas schräg...). Die Abnahme ist nicht linear, sondern logarithmisch. Bei sehr kleinen Gruppen führt die Vergrößerung der Gruppe zu einem starken Abfall der fürs Umblicken investierten Zeit, bei sehr großen Gruppen kaum noch. ''Oder anders herum:'' Wenn die Gruppen sehr klein werden, steigt die Zeit fürs Umblicken sehr rasch an.<br> | '''Beschreibung des Verlaufs:''' Je größer der Schwarm, desto seltener blicken die Vögel um (Das klickt irgendwie etwas schräg...). Die Abnahme ist nicht linear, sondern logarithmisch. Bei sehr kleinen Gruppen führt die Vergrößerung der Gruppe zu einem starken Abfall der fürs Umblicken investierten Zeit, bei sehr großen Gruppen kaum noch. ''Oder anders herum:'' Wenn die Gruppen sehr klein werden, steigt die Zeit fürs Umblicken sehr rasch an.<br> | ||
'''Erklärung des Zusammenhangs:''' Umblicken sorgt für die Sicherheit der ganzen Gruppe. Damit die Sicherheit permanent gewährleistet ist, muss auch ständig ein Tier umblicken. Je mehr Tiere in der Gruppe vorhanden sind, umso stärker verteilt sich diese Aufgabe und die Tiere können anderen Verhaltensweisen nachgehen. | '''Erklärung des Zusammenhangs:''' Umblicken sorgt für die Sicherheit der ganzen Gruppe. Damit die Sicherheit permanent gewährleistet ist, muss auch ständig ein Tier umblicken. Je mehr Tiere in der Gruppe vorhanden sind, umso stärker verteilt sich diese Aufgabe und die Tiere können anderen Verhaltensweisen nachgehen. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
|Titel= | |||
|Inhalt= | |||
* Interpretiert die Abbildung 1 im Buch auf der S. 119 (Schwalbenneester)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | * Interpretiert die Abbildung 1 im Buch auf der S. 119 (Schwalbenneester)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken. | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafik:''' Die Grafik zeigt die relative Häufigkeit von Wanzen in Schwalbennestern in Abhängigkeit von der Größe der Brutkolonie. <br> | '''Beschreibung der Grafik:''' Die Grafik zeigt die relative Häufigkeit von Wanzen in Schwalbennestern in Abhängigkeit von der Größe der Brutkolonie. <br> | ||
'''Beschreibung des Verlaufs:''' Je größer die Kolonie, desto mehr Wanzen befinden sich in den Schwalbennestern.<br> | '''Beschreibung des Verlaufs:''' Je größer die Kolonie, desto mehr Wanzen befinden sich in den Schwalbennestern.<br> | ||
'''Erklärung des Zusammenhangs:''' ''Im Text nicht sehr tiefgründig erklärt.'' Vermutlich könnte man hier ähnlich argumentieren wie bei Pflanzenschädlingen in einer Monokultur. Zum einen ist die Wahrscheinlichkeit bei großen Kolonien einfach größer, dass heimkehrende Schwalben eine Wanze in die Kolonie einbringen (einfach weil die Kolonie von mehr Tieren angeflogen wird). Und wenn die Wanzen erst einmal da sind, bietet eine große Kolonie selbstverständlich hervorragende Vermehrungs-Bedingungen. | '''Erklärung des Zusammenhangs:''' ''Im Text nicht sehr tiefgründig erklärt.'' Vermutlich könnte man hier ähnlich argumentieren wie bei Pflanzenschädlingen in einer Monokultur. Zum einen ist die Wahrscheinlichkeit bei großen Kolonien einfach größer, dass heimkehrende Schwalben eine Wanze in die Kolonie einbringen (einfach weil die Kolonie von mehr Tieren angeflogen wird). Und wenn die Wanzen erst einmal da sind, bietet eine große Kolonie selbstverständlich hervorragende Vermehrungs-Bedingungen. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
|Titel= | |||
|Inhalt= | |||
* Beschreiben Sie die folgenden Abbildungen mit Daten zu einer in Gruppen lebenden Affen-Art (Keine Begründung für den Verlauf nötig)<br> | * Beschreiben Sie die folgenden Abbildungen mit Daten zu einer in Gruppen lebenden Affen-Art (Keine Begründung für den Verlauf nötig)<br> | ||
[[Datei:Gruppe_VorNachteile_aggr_Vert.jpg|600px]] | [[Datei:Gruppe_VorNachteile_aggr_Vert.jpg|600px]] | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafiken:''' Die Grafiken zeigen sowohl die Häufigkeit aggressiver Auseinandersetzungen als auch die erfolgreichen Vertreibungen anderern Gruppen bei einer Affenart in Abhängigkeit von der Gruppengröße.<br> | '''Beschreibung der Grafiken:''' Die Grafiken zeigen sowohl die Häufigkeit aggressiver Auseinandersetzungen als auch die erfolgreichen Vertreibungen anderern Gruppen bei einer Affenart in Abhängigkeit von der Gruppengröße.<br> | ||
'''Beschreibung des Verlaufs:''' Je größer die Gruppe, desto häufiger erfolgen aggressive Auseinandersetzungen, desto häufiger werden aber auch andere Gruppen erfolgreich vertrieben.<br> | '''Beschreibung des Verlaufs:''' Je größer die Gruppe, desto häufiger erfolgen aggressive Auseinandersetzungen, desto häufiger werden aber auch andere Gruppen erfolgreich vertrieben.<br> | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''1. Zusammenfassung: Leben in der Gruppe'''</span> | ||
|Inhalt= | |||
Fast man alle bisher betrachteten Grafik zusammen. Wie könnte man dann eine einfache Faustregel für das Leben in der Gruppe formulieren. | Fast man alle bisher betrachteten Grafik zusammen. Wie könnte man dann eine einfache Faustregel für das Leben in der Gruppe formulieren. | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
Das Leben in der Gruppe hat sowohl Vor- als auch Nachteile.<br> | |||
{{versteckt| | |||
Das Leben in der Gruppe hat sowohl Vor- als auch Nachteile. | |||
< | |||
<br> | <br> | ||
Optional: Schaut ein Video (0:59) über Zwergmangusten: [https://www.youtube.com/watch?v=PWgZ1ylYk3g Hier klicken] | |||
|Lösung|Lösung verbergen}} | |||
<br> | <br> | ||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span> | |||
<span style="color:# | |Inhalt= | ||
Das Leben in der Gruppe hat also Vor- und Nachteile. | Das Leben in der Gruppe hat also Vor- und Nachteile. | ||
* Zeichnet eine Grafik in der auf der y-Achse die Kosten (ein Nachteil) dargestellt sind und zwar in Form von Nahrungskonkurrenz. Das Ganze in Abhängigkeit von der Gruppengröße. Stellt folgende Überlegung an: Betrachtet ein Tier, das Früchte von Bäumen frisst. Wie schwierig ist für eine kleine Gruppe (wie groß ist ihr Nachteil) sich mit Nahrung zu versorgen? Wie schwierig ist es für große Gruppen? | * Zeichnet eine Grafik in der auf der y-Achse die Kosten (ein Nachteil) dargestellt sind und zwar in Form von Nahrungskonkurrenz. Das Ganze in Abhängigkeit von der Gruppengröße. Stellt folgende Überlegung an: Betrachtet ein Tier, das Früchte von Bäumen frisst. Wie schwierig ist für eine kleine Gruppe (wie groß ist ihr Nachteil) sich mit Nahrung zu versorgen? Wie schwierig ist es für große Gruppen? | ||
* Zeichnet dann in die selbe Grafik eine zweite Kurve ein. Die soll zu einer zweiten y-Achse gehören, die ihr am rechten Rand der Grafik einfügt (das sieht man nicht so oft, ist dennoch üblich). Die zweite y-Achse soll den Nutzen (auch "benefit" oder Vorteil) darstellen und zwar gemessen an dem Druck der von Räubern auf eine Gruppe ausgeübt. Mit Druck ist hier gemeint: Wie schlimm ist es für die Gruppe, wenn ein Räuber in der Nähe ist? Wie schlimm ist es für die Gruppe, wenn ein Mitglied vom Räuber gefressen wird? Stellt folgende Überlegungen an: Betrachtet ein Tier, dass kaum Verteidigungsstrategien (außer vielleicht "Wegrennen") besitzt. Wie hoch ist der Druck von Räubern auf eine kleine Gruppe, wie hoch auf eine große? | * Zeichnet dann in die selbe Grafik eine zweite Kurve ein. Die soll zu einer zweiten y-Achse gehören, die ihr am rechten Rand der Grafik einfügt (das sieht man nicht so oft, ist dennoch üblich). Die zweite y-Achse soll den Nutzen (auch "benefit" oder Vorteil) darstellen und zwar gemessen an dem Druck der von Räubern auf eine Gruppe ausgeübt. Mit Druck ist hier gemeint: Wie schlimm ist es für die Gruppe, wenn ein Räuber in der Nähe ist? Wie schlimm ist es für die Gruppe, wenn ein Mitglied vom Räuber gefressen wird? Stellt folgende Überlegungen an: Betrachtet ein Tier, dass kaum Verteidigungsstrategien (außer vielleicht "Wegrennen") besitzt. Wie hoch ist der Druck von Räubern auf eine kleine Gruppe, wie hoch auf eine große? | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
[[Datei:Gruppe_Opt_ML1.jpg|600px]] | [[Datei:Gruppe_Opt_ML1.jpg|600px]] | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span> | ||
|Inhalt= | |||
* Zeichnet in die selbe Grafik eine weitere Kurve ein, die zur zweiten y-Achse (Räuberdruck) gehören soll! Diesmal soll die Anzahl der Räuber in dem Gebiet, in dem die untersuchten Tiere leben sehr viel kleiner sein. | * Zeichnet in die selbe Grafik eine weitere Kurve ein, die zur zweiten y-Achse (Räuberdruck) gehören soll! Diesmal soll die Anzahl der Räuber in dem Gebiet, in dem die untersuchten Tiere leben sehr viel kleiner sein. | ||
* Überlegt, wie man aus dieser Grafik ablesen kann, welche Gruppengröße für die betrachteten Tiere ideal wäre! | * Überlegt, wie man aus dieser Grafik ablesen kann, welche Gruppengröße für die betrachteten Tiere ideal wäre! | ||
* Unterscheidet sich die Gruppengröße in Abhängigkeit von der Anzahl an Raubtieren im Gebiet? | * Unterscheidet sich die Gruppengröße in Abhängigkeit von der Anzahl an Raubtieren im Gebiet? | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
[[Datei:Gruppe_Opt_ML2.jpg|600px]]<br> | [[Datei:Gruppe_Opt_ML2.jpg|600px]]<br> | ||
Die optimale Gruppengröße liegt dort, wo sich die Kurven von Nutzen und Kosten schneiden. Kleinere Gruppen hätten einen kleineren Nutzen, größere Gruppen höhere Kosten. Dieses Prinzip, dass es eine mittlere Gruppengröße gibt, bei der der Nutzen relativ hoch und die Kosten relativ niedrig sind, nennt man '''Optimalitäts-Modell.'''<br> | Die optimale Gruppengröße liegt dort, wo sich die Kurven von Nutzen und Kosten schneiden. Kleinere Gruppen hätten einen kleineren Nutzen, größere Gruppen höhere Kosten. Dieses Prinzip, dass es eine mittlere Gruppengröße gibt, bei der der Nutzen relativ hoch und die Kosten relativ niedrig sind, nennt man '''Optimalitäts-Modell.'''<br> | ||
Wenn sich wenige Räuber im Gebiet aufhalten, ist auch der Druck nicht so groß. Auch wenn es sich bei der Grafik nur um theoretische Überlegungen handelt, findet man dazu passende Phänomene in der Natur: In Gebieten mit mehr Räubern sind die Gruppen von Beutetieren tatsächlich im Durchschnitt größer als in Gebieten mit wenigen Räubern. | Wenn sich wenige Räuber im Gebiet aufhalten, ist auch der Druck nicht so groß. Auch wenn es sich bei der Grafik nur um theoretische Überlegungen handelt, findet man dazu passende Phänomene in der Natur: In Gebieten mit mehr Räubern sind die Gruppen von Beutetieren tatsächlich im Durchschnitt größer als in Gebieten mit wenigen Räubern. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span> | ||
|Inhalt= | |||
Das Optimalitäts-Prinzip kann auch auf andere ethologische Sachverhalten angewendete werden. Zum Beispiel auf die Reviergröße. Zum Thema "Revier" möchte ich nicht viel sagen. Optional (freiwillig) könnt ihr die S. 132 lesen. Für diese Einheit genügt es, wenn ihr wisst, dass "ein Revier" ein Gebiet ist, das von einem Tier oder einer Gruppe gegen Eindringlinge verteidigt wird. | Das Optimalitäts-Prinzip kann auch auf andere ethologische Sachverhalten angewendete werden. Zum Beispiel auf die Reviergröße. Zum Thema "Revier" möchte ich nicht viel sagen. Optional (freiwillig) könnt ihr die S. 132 lesen. Für diese Einheit genügt es, wenn ihr wisst, dass "ein Revier" ein Gebiet ist, das von einem Tier oder einer Gruppe gegen Eindringlinge verteidigt wird. | ||
* Zeichnet eine Grafik die auf der y-Achse sowohl die Kosten, als auch die Nutzen eines Reviers in Abhängigkeit von seiner Größe zeigt! Stellt euch dazu folgende Fragen: | * Zeichnet eine Grafik die auf der y-Achse sowohl die Kosten, als auch die Nutzen eines Reviers in Abhängigkeit von seiner Größe zeigt! Stellt euch dazu folgende Fragen: | ||
Zeile 539: | Zeile 517: | ||
** Wenn das Revier sehr groß ist und die Gruppe völlig ausreichend ernährt, wie ändert sich der Nutzen, wenn es noch größer wird? | ** Wenn das Revier sehr groß ist und die Gruppe völlig ausreichend ernährt, wie ändert sich der Nutzen, wenn es noch größer wird? | ||
** Wie ändern sich die Kosten, wenn das Gebiet immer größer wird? | ** Wie ändern sich die Kosten, wenn das Gebiet immer größer wird? | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
[[Datei:Revier_Opt_ML1.jpg|300px]]<br> | [[Datei:Revier_Opt_ML1.jpg|300px]]<br> | ||
* Die Kosten nehmen (im Idealfall) linear zu. Die Kosten eines Reviers bestehen hauptsächlich darin, die Grenzen zu verteidigen, also z.B. Zeit darauf zu verwenden, an den Grenzen entlang zu patrouillieren. Nimmt man z.B. ein kreisrundes Revier an, nehmen die Grenzen (der Umfang) linear mit dem Faktor 2*pi*r zu. | * Die Kosten nehmen (im Idealfall) linear zu. Die Kosten eines Reviers bestehen hauptsächlich darin, die Grenzen zu verteidigen, also z.B. Zeit darauf zu verwenden, an den Grenzen entlang zu patrouillieren. Nimmt man z.B. ein kreisrundes Revier an, nehmen die Grenzen (der Umfang) linear mit dem Faktor 2*pi*r zu. | ||
* Der Nutzen nimmt zunächst mit steigender Fläche zu, weil mehr angebaut werden kann etc. Allerdings wird der Anstieg bei sehr großen Flächen immer weniger relevant. Stellt euch vor, der Gruppe gehört die halbe Welt. Nahrung ist im Überfluss vorhanden. Versteck- und Schlafmöglichkeiten gibt es unzählige. Wenn man der Gruppe nun die ganze Welt zur Verfügung stellen würde, hätte das quasi keinen Mehrwert. | * Der Nutzen nimmt zunächst mit steigender Fläche zu, weil mehr angebaut werden kann etc. Allerdings wird der Anstieg bei sehr großen Flächen immer weniger relevant. Stellt euch vor, der Gruppe gehört die halbe Welt. Nahrung ist im Überfluss vorhanden. Versteck- und Schlafmöglichkeiten gibt es unzählige. Wenn man der Gruppe nun die ganze Welt zur Verfügung stellen würde, hätte das quasi keinen Mehrwert. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span> | ||
|Inhalt= | |||
* Wo findet man in der gezeichneten Grafik die optimale Reviergröße? | * Wo findet man in der gezeichneten Grafik die optimale Reviergröße? | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
[[Datei:Revier_Opt_ML2.jpg|300px]]<br> | [[Datei:Revier_Opt_ML2.jpg|300px]]<br> | ||
Dort wo der Abstand zwischen Kosten und Nutzen am größten ist. (Nur in dem hier gezeichneten Fall. Wurde die Grafik so gezeichnet, dass die Kosten-Linie immer über der Nutzen-Linie liegt, dann ist die optimale Revier-Größe dort, wo der Abstand am kleinsten ist) | Dort wo der Abstand zwischen Kosten und Nutzen am größten ist. (Nur in dem hier gezeichneten Fall. Wurde die Grafik so gezeichnet, dass die Kosten-Linie immer über der Nutzen-Linie liegt, dann ist die optimale Revier-Größe dort, wo der Abstand am kleinsten ist) | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | |||
|Inhalt= | |||
<span style="color:# | |||
Normalerweise sollten sich bei Tieren Verhaltensweisen evolutionär durchsetzen, die für sie einen Vorteil bedeuten. Manche Tiere tun jedoch Dinge, die auf den ersten Blick für sie nur einen Nachteil bedeuten. Zum Beispiel gibt es bei den Florida-Buschhähern ([https://commons.wikimedia.org/wiki/File:Florida-Buschhäher_(Aphelocoma_coerulescens)_lat._B._Walker.jpg Bild]) das Phänomen des "Helfens". In der Regel gibt es deutlich mehr Männchen als Weibchen und während der Brutsaison finden einige Männchen keinen Partner. Etliche von diesen Männchen engagieren sich jedoch als "Helfer" und schaffen für die Jungtiere eines anderen Paares Nahrung herbei. Die folgende Grafik zeigt Ergebnisse einer Studie zu dieser Thematik. In der Studie wurde brütenden Paaren ihr Helfer weggenommen (''Wie auch immer das gemacht wurde...omg!''), das ist die Experimentalgruppe. Verglichen wurde die durchschnittliche Anzahl an Nachkommen dieser Gruppe mit dem Durchschnitt an Nachkommen von Gruppen, die ihre Helfer behalten haben (Kontrollgruppe). | Normalerweise sollten sich bei Tieren Verhaltensweisen evolutionär durchsetzen, die für sie einen Vorteil bedeuten. Manche Tiere tun jedoch Dinge, die auf den ersten Blick für sie nur einen Nachteil bedeuten. Zum Beispiel gibt es bei den Florida-Buschhähern ([https://commons.wikimedia.org/wiki/File:Florida-Buschhäher_(Aphelocoma_coerulescens)_lat._B._Walker.jpg Bild]) das Phänomen des "Helfens". In der Regel gibt es deutlich mehr Männchen als Weibchen und während der Brutsaison finden einige Männchen keinen Partner. Etliche von diesen Männchen engagieren sich jedoch als "Helfer" und schaffen für die Jungtiere eines anderen Paares Nahrung herbei. Die folgende Grafik zeigt Ergebnisse einer Studie zu dieser Thematik. In der Studie wurde brütenden Paaren ihr Helfer weggenommen (''Wie auch immer das gemacht wurde...omg!''), das ist die Experimentalgruppe. Verglichen wurde die durchschnittliche Anzahl an Nachkommen dieser Gruppe mit dem Durchschnitt an Nachkommen von Gruppen, die ihre Helfer behalten haben (Kontrollgruppe). | ||
* Interpretieren Sie die Grafik! <br> | * Interpretieren Sie die Grafik! <br> | ||
[[Datei:Altruismu_Helfer.jpg|600px]]<br> | [[Datei:Altruismu_Helfer.jpg|600px]]<br> | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
Die Grafik zeigt die durchschnittliche Anzahl an Nachkommen bei zwei Gruppen von Florida-Buschhähern in den Jahren 1987 und 1988 (und insgesamt). Verglichen wird die Gruppe der Vögel, die ihren Helfer verloren haben mit der Gruppe, die ihren Helfer behalten haben. Die Anzahl der Nachkommen ist in der Gruppe mit Helfer deutlich höher. Der Helfer hat für das brütende Paar also tatsächlich einen großen Vorteil. (Aber für sich selbst?) | Die Grafik zeigt die durchschnittliche Anzahl an Nachkommen bei zwei Gruppen von Florida-Buschhähern in den Jahren 1987 und 1988 (und insgesamt). Verglichen wird die Gruppe der Vögel, die ihren Helfer verloren haben mit der Gruppe, die ihren Helfer behalten haben. Die Anzahl der Nachkommen ist in der Gruppe mit Helfer deutlich höher. Der Helfer hat für das brütende Paar also tatsächlich einen großen Vorteil. (Aber für sich selbst?) | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | ||
|Inhalt= | |||
Lest die S. 120 und fasst zusammen, wie erklärt wird, dass die Verhaltensweise "Helfen" sich evolutionär durchsetzt, obwohl sie doch scheinbar zunächst nur Kosten für das helfende Tier verursacht! | Lest die S. 120 und fasst zusammen, wie erklärt wird, dass die Verhaltensweise "Helfen" sich evolutionär durchsetzt, obwohl sie doch scheinbar zunächst nur Kosten für das helfende Tier verursacht! | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
Kurz zusammengefasst spielt hier der Begriff "indirekte Fitness" die entscheidende Rolle. Vereinfacht ausgedrückt: Die Helfer sind oft mit dem brütenden Paar verwandt. Das bedeutet sie haben statistisch gesehen einen gewissen Teil der Gene gemeinsam. Der Helfer sorgt mit seinem "Helfen" also dafür, dass ein Teil seiner Gene (also auch die, die das "Helfen" verursachen) in die nächste Generation gelangt auch ohne, dass er sich selbst fortpflanzt. <br> | Kurz zusammengefasst spielt hier der Begriff "indirekte Fitness" die entscheidende Rolle. Vereinfacht ausgedrückt: Die Helfer sind oft mit dem brütenden Paar verwandt. Das bedeutet sie haben statistisch gesehen einen gewissen Teil der Gene gemeinsam. Der Helfer sorgt mit seinem "Helfen" also dafür, dass ein Teil seiner Gene (also auch die, die das "Helfen" verursachen) in die nächste Generation gelangt auch ohne, dass er sich selbst fortpflanzt. <br> | ||
Außerdem werden Helfer im nächsten Jahr von Weibchen bevorzugt, was den Fortpflanzungserfolg der Helfer stark erhöht. | Außerdem werden Helfer im nächsten Jahr von Weibchen bevorzugt, was den Fortpflanzungserfolg der Helfer stark erhöht. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | ||
|Inhalt= | |||
Das bedeutet, dass "Helfen" mehr Sinn macht, bei Personen mit denen man näher verwandt ist. | Das bedeutet, dass "Helfen" mehr Sinn macht, bei Personen mit denen man näher verwandt ist. | ||
* Interpretiert (diesmal ausführlich) dazu die folgende Grafik, die Daten von Affen enthält! <br> | * Interpretiert (diesmal ausführlich) dazu die folgende Grafik, die Daten von Affen enthält! <br> | ||
[[Datei:Gruppe_Hamilton.jpg|600px]]<br> | [[Datei:Gruppe_Hamilton.jpg|600px]]<br> | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafiken:''' Die Grafik zeigt die Häufigkeit gegenseitigen Lausens in Abhängigkeit vom Verwandtschaftsgrad.<br> | '''Beschreibung der Grafiken:''' Die Grafik zeigt die Häufigkeit gegenseitigen Lausens in Abhängigkeit vom Verwandtschaftsgrad.<br> | ||
'''Beschreibung des Verlaufs:''' Je höher der Verwandtschaftsgrad, desto häufiger wird gelaust.<br> | '''Beschreibung des Verlaufs:''' Je höher der Verwandtschaftsgrad, desto häufiger wird gelaust.<br> | ||
'''Erklärung des Zusammenhangs:''' Man kann hier mit indirekter Fitness argumentieren: Derjenige der laust, hat zunächst Kosten (er muss Zeit aufwenden, die er nicht für Nahrungssuche, Partnersuche etc. verwenden kann). Der gelauste Affe hat Vorteile (Parasiten werden entfernt). Sind die sich lausenden Tiere jedoch verwandt, trägt die Verhaltensweise dazu bei, dass die Gene des lausenden Tiers, die sich aufgrund der Verwandtschaft teilweise auch im gelausten Tier befinden, größere Chancen haben, in die nächste Generation zu gelangen. <br> | '''Erklärung des Zusammenhangs:''' Man kann hier mit indirekter Fitness argumentieren: Derjenige der laust, hat zunächst Kosten (er muss Zeit aufwenden, die er nicht für Nahrungssuche, Partnersuche etc. verwenden kann). Der gelauste Affe hat Vorteile (Parasiten werden entfernt). Sind die sich lausenden Tiere jedoch verwandt, trägt die Verhaltensweise dazu bei, dass die Gene des lausenden Tiers, die sich aufgrund der Verwandtschaft teilweise auch im gelausten Tier befinden, größere Chancen haben, in die nächste Generation zu gelangen. <br> | ||
Die Hamilton-Ungleichung kann man hier noch anführen. Sie ist allerdings nicht generell anwendbar, daher gehe ich nicht weiter darauf ein. | Die Hamilton-Ungleichung kann man hier noch anführen. Sie ist allerdings nicht generell anwendbar, daher gehe ich nicht weiter darauf ein. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | ||
|Inhalt= | |||
Soweit so gut. Über die indirekte Fitness kann man also die Verhaltensweise von Helfern erklären. Leider funktioniert das nur bei '''primären Helfern'''. Das sind genau die, die eben verwandt mit dem brütenden Paar sind. Bei Graufischern ([https://commons.wikimedia.org/wiki/File:Ceryle_rudis_(male).jpg Bild]) tauchen allerdings '''sekundäre Helfer''' auf, diese sind nicht mit dem brütenden Paar verwandt. | Soweit so gut. Über die indirekte Fitness kann man also die Verhaltensweise von Helfern erklären. Leider funktioniert das nur bei '''primären Helfern'''. Das sind genau die, die eben verwandt mit dem brütenden Paar sind. Bei Graufischern ([https://commons.wikimedia.org/wiki/File:Ceryle_rudis_(male).jpg Bild]) tauchen allerdings '''sekundäre Helfer''' auf, diese sind nicht mit dem brütenden Paar verwandt. | ||
* Beschreiben Sie dazu die folgende Grafik (keine Erklärung)! <br> | * Beschreiben Sie dazu die folgende Grafik (keine Erklärung)! <br> | ||
[[Datei:Altruismu_sekHelfer.jpg|600px]]<br> | [[Datei:Altruismu_sekHelfer.jpg|600px]]<br> | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Beschreibung der Grafiken:''' Die Grafik zeigt die für Jungtiere herbeigeschaffte Menge Futter (in Kilokalorien) von den Eltern und primären bzw. sekundären Helfern.<br> | '''Beschreibung der Grafiken:''' Die Grafik zeigt die für Jungtiere herbeigeschaffte Menge Futter (in Kilokalorien) von den Eltern und primären bzw. sekundären Helfern.<br> | ||
'''Beschreibung des Verlaufs:''' Die Eltern schaffen sehr viel Nahrung herbei (das Weibchen etwas weniger, weil es auch noch brütet), primäre Helfer fast so viel wie der eigene Vater, sekundäre Helfer tragen nur geringfügig zur Ernährung der Jungtiere bei. <br> | '''Beschreibung des Verlaufs:''' Die Eltern schaffen sehr viel Nahrung herbei (das Weibchen etwas weniger, weil es auch noch brütet), primäre Helfer fast so viel wie der eigene Vater, sekundäre Helfer tragen nur geringfügig zur Ernährung der Jungtiere bei. <br> | ||
Salopp könnte man auch sagen: ''Sekundäre Helfer reißen sich jetzt nicht gerade ein Bein aus...'' | Salopp könnte man auch sagen: ''Sekundäre Helfer reißen sich jetzt nicht gerade ein Bein aus...'' | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | ||
|Inhalt= | |||
* Beschreiben Sie (diesmal nur sehr kurz) die folgenden Grafiken, die ebenfalls anhand von Graufischer-Daten gewonnen wurden (keine Erklärung)! <br> | * Beschreiben Sie (diesmal nur sehr kurz) die folgenden Grafiken, die ebenfalls anhand von Graufischer-Daten gewonnen wurden (keine Erklärung)! <br> | ||
[[Datei:Altruismu_sekHelfer2.jpg|600px]]<br> | [[Datei:Altruismu_sekHelfer2.jpg|600px]]<br> | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
Auch sekundäre Helfer haben im 2. Jahr einen Fitnessgewinn. | Auch sekundäre Helfer haben im 2. Jahr einen Fitnessgewinn. | ||
}} | |Lösung|Lösung verbergen}} | ||
<br> | <br> | ||
{{Box-spezial | |||
< | |Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | ||
|Inhalt= | |||
Lesen Sie im Buch S. 121 die ersten vier Absätze (Nicht zu lesen "Eusozialität") | Lesen Sie im Buch S. 121 die ersten vier Absätze (Nicht zu lesen "Eusozialität") | ||
* Hier wird das "Helfen" von nicht-verwandten Tieren mit '''reziprokem Altruismus''' erklärt. Füllen Sie diesen Fachbegriff etwas mit Leben! | * Hier wird das "Helfen" von nicht-verwandten Tieren mit '''reziprokem Altruismus''' erklärt. Füllen Sie diesen Fachbegriff etwas mit Leben! | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | <br> | ||
{{Lösung versteckt| | |||
{{versteckt| | |||
'''Reziproker Altruismus''' könnte stark vereinfacht mit: "Hilfst Du mir, helf ich Dir!" veranschaulicht werden. Die Vampirfledermäuse im Text helfen anderen häufiger, wenn ihnen von den zu helfenden bereits einmal geholfen wurde. Tatsächlich zeigen auch psychologische Studien beim Menschen einen ähnlichen Effekt: Berufsgruppen, die anderen helfen (Feuerwehrmänner, Krankenschwester etc.) genießen in der Regel einen sehr guten Ruf. Allerdings kann man beim Menschen hohes Ansehen nicht zwangsläufig mit höherem Fortpflanzungserfolg gleichsetzen. | '''Reziproker Altruismus''' könnte stark vereinfacht mit: "Hilfst Du mir, helf ich Dir!" veranschaulicht werden. Die Vampirfledermäuse im Text helfen anderen häufiger, wenn ihnen von den zu helfenden bereits einmal geholfen wurde. Tatsächlich zeigen auch psychologische Studien beim Menschen einen ähnlichen Effekt: Berufsgruppen, die anderen helfen (Feuerwehrmänner, Krankenschwester etc.) genießen in der Regel einen sehr guten Ruf. Allerdings kann man beim Menschen hohes Ansehen nicht zwangsläufig mit höherem Fortpflanzungserfolg gleichsetzen. | ||
|Lösung|Lösung verbergen}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span> | |||
|Inhalt= | |||
Optional: Schaut ein Video (2:43) über den Florida Buschhäher: [https://www.youtube.com/watch?v=QP6KM6qe03E Hier klicken] | |||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | }} | ||
<br> | <br> | ||
== Sozialverhalten == | |||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Überblick'''</span> | |||
|Inhalt= | |||
Das letzte im Biologie-Lehrplan der 12. Jahrgangsstufe vorgesehene Kapitel betrachtet Verhaltensweisen, die in sozialen Gruppen eine Rolle spielen. | Das letzte im Biologie-Lehrplan der 12. Jahrgangsstufe vorgesehene Kapitel betrachtet Verhaltensweisen, die in sozialen Gruppen eine Rolle spielen. | ||
* Dazu ist es zunächst wichtig verschiedene '''Formen des Zusammenlebens''' zu unterscheiden. (Buch, S. 117) | * Dazu ist es zunächst wichtig verschiedene '''Formen des Zusammenlebens''' zu unterscheiden. (Buch, S. 117) | ||
Zeile 676: | Zeile 663: | ||
* Es gibt Tiere, die ihr Leben lang sehr isoliert leben und kaum Kontakt zu Artgenossen haben. Spätestens wenn sie sich '''fortpflanzen''' wollen, brauchen sie aber einen Partner. Welche Strategien gibt es, einen zu finden? (Buch S. 140 – 143, 146 -149) | * Es gibt Tiere, die ihr Leben lang sehr isoliert leben und kaum Kontakt zu Artgenossen haben. Spätestens wenn sie sich '''fortpflanzen''' wollen, brauchen sie aber einen Partner. Welche Strategien gibt es, einen zu finden? (Buch S. 140 – 143, 146 -149) | ||
* Einige Verhaltensstrategien in Gruppen scheinen auf den ersten Blick '''altruistisch'''. Das bedeutet, das handelnde Tier hat eher einen Nachteil, während ein anderes Tier davon profitiert. Das würde aber dem Evolutionsgedanken widersprechen – stark vereinfacht: Wenn ein Tier eine Verhaltensweise zeigt, muss es dafür Energie aufwenden. Tiere, die diese Verhaltensweise nicht zeigen, verbrauchen weniger. Es sollte sich das Tier stärker vermehren können, das weniger Energie verbraucht. Die anderen sollten nach und nach aussterben. Wie kann es dann sein, dass sich trotzdem scheinbar altruistische Verhaltensweisen entwickelt haben und bestehen bleiben. (Buch, S. 120 – 123) | * Einige Verhaltensstrategien in Gruppen scheinen auf den ersten Blick '''altruistisch'''. Das bedeutet, das handelnde Tier hat eher einen Nachteil, während ein anderes Tier davon profitiert. Das würde aber dem Evolutionsgedanken widersprechen – stark vereinfacht: Wenn ein Tier eine Verhaltensweise zeigt, muss es dafür Energie aufwenden. Tiere, die diese Verhaltensweise nicht zeigen, verbrauchen weniger. Es sollte sich das Tier stärker vermehren können, das weniger Energie verbraucht. Die anderen sollten nach und nach aussterben. Wie kann es dann sein, dass sich trotzdem scheinbar altruistische Verhaltensweisen entwickelt haben und bestehen bleiben. (Buch, S. 120 – 123) | ||
<br> | |Farbe= #00F | ||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Formen sozialer Verbände'''</span> | |||
|Inhalt= | |||
* Lest den grauen Kasten auf S. 117 (Formen sozialer Verbände) und verinnerlicht die Begriffe! | * Lest den grauen Kasten auf S. 117 (Formen sozialer Verbände) und verinnerlicht die Begriffe! | ||
* Schließt das Buch! | * Schließt das Buch! | ||
Zeile 683: | Zeile 677: | ||
** 1. Kattas (''Lemur catta'') leben in Gruppen zu ca. 13 – 15 Tieren. Die Gruppen werden von einem zentralen Weibchen angeführt, dass z.B. die Bewegungsrichtung der Gruppe bestimmt. Aufgrund einer ausgebildeten Rangordnung ist klar festgelegt, in welcher Reihenfolge die Tiere dem anführenden Weibchen folgen dürfen. | ** 1. Kattas (''Lemur catta'') leben in Gruppen zu ca. 13 – 15 Tieren. Die Gruppen werden von einem zentralen Weibchen angeführt, dass z.B. die Bewegungsrichtung der Gruppe bestimmt. Aufgrund einer ausgebildeten Rangordnung ist klar festgelegt, in welcher Reihenfolge die Tiere dem anführenden Weibchen folgen dürfen. | ||
** 2. Auf dem Blütenstand einer Schafgarbe befinden sich verschiedene Käfer, zwei Fliegen und ein Schmetterling um den Nektar der Pflanze zu trinken. | ** 2. Auf dem Blütenstand einer Schafgarbe befinden sich verschiedene Käfer, zwei Fliegen und ein Schmetterling um den Nektar der Pflanze zu trinken. | ||
* | |Farbe= #00F | ||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | |||
{{Lösung versteckt| | |||
* Kattas bilden '''individualisierte, geschlossene''' Verbände. (Warum? Individualisiert bedeutet, die Tiere kennen sich untereinander persönlich. Das ist hier zwingend erforderlich, sonst könnten die Tiere die Rangordnung nicht einhalten. | |||
* Die verschiedenen Tiere auf einer Blüte bezeichnet man als '''Aggregation.''' Es gibt keine Bindung oder Beziehung zwischen den Tieren. Sie befinden sich nur aufgrund eines äußeren Umweltfaktors (dem Nektar) zusammen an diesem Ort. | |||
|Lösung|Lösung verbergen}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#00F">'''Signale'''</span> | |||
|Inhalt= | |||
* Betrachtet zunächst nur die Abb. 1. Auf der S. 124, lest nicht den Text! | * Betrachtet zunächst nur die Abb. 1. Auf der S. 124, lest nicht den Text! | ||
* Versucht folgende Aufgabe zu lösen: Ein frisch geschlüpftes, einsames Küken piept laut und wedelt aufgeregt mit den Flügeln. Die Henne, die das Ei gelegt hat, aus dem das Küken geschlüpft ist, kommt herbei gerannt. Spielt man die Rufe des Kükens von einem Tonband ab, kommt die Henne ebenfalls herbeigerannt. Stülpt man über das Küken eine Glasglocke, so dass die Henne das Küken zwar sehen kann, die Rufe jedoch nicht hört, interessiert sich die Henne nicht für das Küken. Interpretieren Sie dieses Verhalten aus kommunikationstheoretischer Sicht! | * Versucht folgende Aufgabe zu lösen: Ein frisch geschlüpftes, einsames Küken piept laut und wedelt aufgeregt mit den Flügeln. Die Henne, die das Ei gelegt hat, aus dem das Küken geschlüpft ist, kommt herbei gerannt. Spielt man die Rufe des Kükens von einem Tonband ab, kommt die Henne ebenfalls herbeigerannt. Stülpt man über das Küken eine Glasglocke, so dass die Henne das Küken zwar sehen kann, die Rufe jedoch nicht hört, interessiert sich die Henne nicht für das Küken. Interpretieren Sie dieses Verhalten aus kommunikationstheoretischer Sicht! | ||
Zeile 689: | Zeile 696: | ||
* Schließt das Buch! | * Schließt das Buch! | ||
* Legt eine Tabelle an, die ihr mit folgenden Aspekten füllt: Welche Arten von Signalen gibt? Was sind die Vor- und Nachteile der jeweiligen Signalarten? Nenne ein konkretes Beispiel für jede Signalart! | * Legt eine Tabelle an, die ihr mit folgenden Aspekten füllt: Welche Arten von Signalen gibt? Was sind die Vor- und Nachteile der jeweiligen Signalarten? Nenne ein konkretes Beispiel für jede Signalart! | ||
|Farbe= #00F | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #CFF | |||
|Hintergrund= #CFF | |||
}} | |||
<br> | |||
{{Lösung versteckt| | |||
* Das Küken ist der '''Sender'''. Die '''Information''' könnte mit "ich bin allein, hilflos und brauche Schutz" beschrieben werden. Diese Information wird '''codiert''' und in Form von Lauten und auch durch das Wedeln mit den Flügel geäußert. Das sind '''Signale''' (akustische und optische). Der '''Empfänger''' ist die Henne, die diese Signale wieder in die ursprüngliche Information '''decodiert'''. Die Henne kann offensichtlich nur akustische Signale decodieren. Dies zeigt der Versuch mit dem Tonband. Die optischen Signale können von der Henne nicht verarbeitet werden (das zeigt der Versuch mit der Glasglocke). | |||
* Eine Übersicht über die verschiedenen Signalarten mit Beispielen und deren Vor- bzw. Nachteile findet ihr im Skript. | |||
|Lösung|Lösung verbergen}} | |||
<br> | |||
====<span style="color:#00A">'''Arbeitsaufträge vom 17.03., zu bearbeiten bis 20.03.'''</span>==== | |||
* Macht eine Pause – holt euch einen Kaffee (o.ä.)! | |||
</div> | </div> | ||
<br> | <br> | ||
Zeile 696: | Zeile 718: | ||
====<span style="color:#080">Für die Arbeitsaufträge vom 17.03.</span>==== | ====<span style="color:#080">Für die Arbeitsaufträge vom 17.03.</span>==== | ||
{{versteckt| | {{versteckt| | ||
}} | }} | ||
</div> | </div> |
Version vom 10. März 2024, 11:58 Uhr
Datei:Sexualverhalten Paarungssysteme Beispiele.jpg
Falls ihr die Tiere nicht kennt: Recherchiert selbst nach einem Bild!
Die Grafiken zeigen den Fortpflanzungserfolg gemessen als Anzahl der Nachkommen bei Drosophila-Männchen und -Weibchen in Abhängigkeit von der Anzahl an Paarungspartnern. Man erkennt, dass Männchen einen umso größeren Fortpflanzungserfolg haben, je mehr Weibchen sie begatten. Bei Weibchen bleibt der Fortpflanzungserfolg gleich, unabhängig davon mit wie vielen Männchen sie sich paaren.
Die Erklärung müsstet ihr hier raten (besser: durch Überlegen sinnvoll ableiten): Die Anzahl der Eier, die Weibchen legen ist immer gleich. Egal mit wie vielen Männchen sich das Weibchen paart. Je mehr Weibchen ein Männchen allerdings begattet, umso mehr Eier werden gelegt, die von Spermien dieses Männchens befruchtet wurden.
Die Grafik zeigt den Fortpflanzungserfolg von Paradiesvogel-Männchen bei denen künstlich die Schwanzfederlänge verändert wurde im Vergleich zu unmanipulierten Tieren. Je länger die Schwanzfedern desto größer ist der Fortpflanzungserfolg.
Erklärung: Die langen Schwanzfedern scheinen für die Weibchen ein Signal zu sein, dass das Männchen ein "guter" Sexualpartner ist. Wahrscheinlich ist das auch so. Denn die Schwanzfedern sind für das Fliegen im Dschungel sicher ein Nachteil. Auch sind die Männchen damit viel auffälliger und werden von Feinden leichter entdeckt. Insofern scheinen Männchen, die "es sich leisten können, solche Federn zu produzieren" tatsächlich sehr erfolgreich, gesund und fit (im evolutionären Sinne, also "passend") zu sein.
Die Grafik zeigt die Kopulationsdauer (und damit die Menge der übertragenen Spermien) in Abhängigkeit von der Größe des Brautgeschenks. Je größer das Brautgeschenk, desto länger die Kopulationsdauer (und damit im Schnitt auch der Fortpflanzungserfolg).
Erklärung: Das Weibchen lässt die Kopulationsdauer zu, solange sie das Brautgeschenk frisst. Es ist für das Männchen also von Vorteil, ein möglichst großes Beutetier als Brautgeschenk zu fangen. Dies gelingt vermutlich überwiegend den besonders fit-ten Männchen (fit im Sinne der Evolution: die am besten angepassten).
Hinweis: Im Buch ist hier ein sehr schönes Beispiel für Ritualisierung bei manchen Tanzfliegenarten beschrieben. Das Überreichen eines Brautgeschenkes verliert seine ursprüngliche Bedeutung (um das Weibchen zu beschäftigen, damit sich das Männchen mit ihm paaren kann) und hat jetzt nur noch Signalcharakter.
Die Grafik zeigt den Fortpflanzungserfolg von See-Elefanten-Männchen und Weibchen gemessen als Anzahl entwöhnter Jungtiere in Abhängigkeit vom Rang des Tieres. Man erkennt: Beim Männchen nimmt der Fortpflanzungserfolg mit niedriger werdendem Rang extrem rasch ab. Im Prinzip haben nur die ranghöchsten Tiere einen Fortpflanzungserfolg. Bei Weibchen ist der Fortpflanzungserfolg quasi kaum vom Rang abhängig. Erklärung: Genaue Erklärung steht im Text. Bemerkenswert: Hier wird deutlich wie essentiell für die Männchen der Kampf ums Weibchen ist, während die Weibchen überhaupt keinen Vorteil von aggressiven Verhaltensweisen untereinander hätten.
Die Vorsilbe "inter..." bedeutet zwischen, "intra..." bedeutet innerhalb. Die Silbe "spezifisch" meint hier im biologischen Sinne Art.
Intraspezifische Aggression wären also aggressive Verhaltensweisen innerhalb einer Art, z.B.: Zwei Amseln streiten im Garten um ein Revier; ein ranghöheres Raubtier droht einem rangniedrigeren Tier beim Fressen der gemeinsam erlegten Beute weg (z.B. bei Wölfen).
Interspezifische Aggression bezeichnet dann Verhaltensweisen, die zwischen Arten auftritt, z.B. ein Raubtier jagt ein Beutetier (Löwe und Kaffernbüffel) oder eine Mutter verteidigt ihre Eier/Jungen gegen artfremde Angreifer (Adelie-Pinguin-Mutter hackt nach Raubmöwe)
Für den Fall, dass ihr die genannten Tiere nicht kennt:
- Imponierverhalten: Röhrduell, Prarallelgehen
- Kommentkampf: Geweihe ineinander verhaken. Schieben
- Beschädigungskampf: - konnte hier nicht erkannt werden -
- Proximate Ursachen: Hier werden eher physiologische Abläufe im Körper untersucht, die ein bestimmtes Verhalten auslösen. Z.B. könnten hier Hormone, bestimmte Umweltreize o.ä. eine Rolle spielen.
- Ultimate Ursachen: Diese werden eher dem Gebiet der Verhaltensökologie zugeordnet. Es geht darum zu klären, warum diese Verhaltensweisen den Erhalt der Art sichern. Letztlich also, um zu zeigen, dass eine bestimmte Verhaltensweise einen höheren Fitness-Gewinn erzielt (im Sinne evolutionärer Fitness).
Datei:Aggression psychohydraulischesModell.jpg
- Mit diesem Modell könnte man z.B. erklären, warum manche Menschen bei einem bestimmten Auslöser / in einer bestimmten Situation ausrasten, andere nicht. Aufgrund der doppelten Quantifizierung (dieser Begriff ist immer noch gültig, auch wenn das psychohydraulische Modell nicht mehr verwendet wird) spielt nämlich nicht nur der Reiz eine Rolle, sondern auch "innere Faktoren" und die könnten bei unterschiedlichen Menschen ja gerade unterschiedlich sein. Konkretes Beispiel: Ein Lehrer kommt in die Klasse und sagt: "Wir schreiben heute eine Ex". Manche Schüler rasten aus, zerbrechen ihren Stift und schlagen mit dem Lineal auf ihren Rucksack... Während andere sich gechillt zurücklehnen und die Sache auf sich zukommen lassen.
- Probleme mit dem psychohydraulischen Modell: Man müsste Leerlaufhandlungen beobachten können (weil das aktionsspezifische Potential sich so stark angestaut hat). Das bedeutet, wenn lange keine aggressive Handlung ausgeführt würde, müssten schon kleinste äußere Reize (im Extremfall auch ohne) eine aggressive Handlung hervorrufen. Das ist nicht zu beobachten. Aus eigener Erfahrung würde ich eher sagen: Im Gegenteil! Menschen, die wenig aggressives Verhalten zeigen, sind äußerst schwer aus der Ruhe zu bringen. (Das ist jetzt aber tatsächlich eine Meinung, keine wissenschaftlich fundierte Aussage)
- Ein weiteres Problem: Es gibt keine physiologische Entsprechung zum "aktionsspezifischen Potential". Das bedeutet: Man findet im Körper keinen Stoff o.ä., der sich anreichert, wenn keine aggressiven Handlungen ausgeführt werden.
- 00:20 und 00:30: Es wird eine kurze Bewegung mit dem Schnabel in den hinteren Teil des Gefieders durchgeführt. Ursprünglich könnte das "Putzverhalten" bzw. Gefiederpflege gewesen sein.
- 00:45 - 00:10: Es werden mit dem Schnabel Wasserpflanzen aufgenommen und dem Partner auffällig präsentiert. Ursprünglich könnte diese Verhaltensweise mit dem Nestbau zu tun gehabt haben. (Dazu muss man wissen, dass Haubentaucher ein Nest aus Wasserpflanzen bauen)
Wie immer bei dieser Aufgabenstellung solltet ihr die folgenden drei Punkte abarbeiten:
Identifikation des Verhaltens + Fachbegriff: Es handelt sich beim Balzverhalten des Auerhuhns um ein ritualisiertes Verhalten:
Definition: Ein Verhalten, das ursprünglich einem anderen Bedeutungskreis zugeordnet war, wird nun als Signal zur Kommunikation eingesetzt. Häufig werden dabei Verhaltenselemente stark vereinfacht oder auch übertrieben, mit auffälligen Körpermerkmalen unterstützt, rhythmisch wiederholt, teilweise aber auch ausgelassen.
Zuordnung von Textstellen des konkreten Beispiels zu den allgemeinen Begriffen der Definition: Ursprünglich könnte das Auffächern und Aufrichten der Schwanzfedern aus dem Bereich des Aggressionsverhaltens stammen. Die Vergrößerung der Körperumrisse ist dort typisch. Nun ist diese Verhalten einzig als Signal zur Kommunikation mit Weibchen umfunktioniert. Es signalisiert Paarungsbereitschaft. Typisch für ritualisiertes Verhalten ist hier das rhythmische Klappern mit dem Schnabel.
z.B.: Manche Jungs lassen vor der Disko den Motor ihres Autos aufheulen. "Vollgas geben" macht auf einem Parkplatz keinen Sinn. Ein ursprünglich aus einem anderen Funktionskreis stammendes Verhalten hat jetzt nur noch Signalcharakter zur Kommunikation im Sinne von "Ich-bin-bereit-zur-Paarung".
Beschreibung der Grafik: Die Grafiken zeigen sowohl die Häufigkeiten von Störungen und die Häufigkeiten von Angriffen durch Räuber als auch die Menge gefressener Jungtiere bei Zwergmangusten, einmal in Gruppen mit weniger als 5 Tieren und einmal in Gruppen mit mehr als 5 Tieren.
Beschreibung des Verlaufs:Störungen treten in beiden Gruppengrößen gleich häufig auf, Angriffe erfolgen auf Gruppen mit mehr als 5 Tieren deutlich seltener. In großen Gruppen werden keine Jungtiere von Räubern gefressen.
Erklärung des Zusammenhangs: Im Wesentlichen kann man hier den Text im Schulbuch zusammenfassen. In großen Gruppen gibt es mehr "Wächter", die die anderen in der Gruppe vor einem Angreifer warnen können. Damit sind Räuber quasi nicht mehr erfolgreich.
Beschreibung der Grafik: Die Grafik zeigt die Rate des schnellen Umblickens in Abhängigkeit von der Schwarmgröße bei Haussperlingen.
Beschreibung des Verlaufs: Je größer der Schwarm, desto seltener blicken die Vögel um (Das klickt irgendwie etwas schräg...). Die Abnahme ist nicht linear, sondern logarithmisch. Bei sehr kleinen Gruppen führt die Vergrößerung der Gruppe zu einem starken Abfall der fürs Umblicken investierten Zeit, bei sehr großen Gruppen kaum noch. Oder anders herum: Wenn die Gruppen sehr klein werden, steigt die Zeit fürs Umblicken sehr rasch an.
Erklärung des Zusammenhangs: Umblicken sorgt für die Sicherheit der ganzen Gruppe. Damit die Sicherheit permanent gewährleistet ist, muss auch ständig ein Tier umblicken. Je mehr Tiere in der Gruppe vorhanden sind, umso stärker verteilt sich diese Aufgabe und die Tiere können anderen Verhaltensweisen nachgehen.
Beschreibung der Grafik: Die Grafik zeigt die relative Häufigkeit von Wanzen in Schwalbennestern in Abhängigkeit von der Größe der Brutkolonie.
Beschreibung des Verlaufs: Je größer die Kolonie, desto mehr Wanzen befinden sich in den Schwalbennestern.
Erklärung des Zusammenhangs: Im Text nicht sehr tiefgründig erklärt. Vermutlich könnte man hier ähnlich argumentieren wie bei Pflanzenschädlingen in einer Monokultur. Zum einen ist die Wahrscheinlichkeit bei großen Kolonien einfach größer, dass heimkehrende Schwalben eine Wanze in die Kolonie einbringen (einfach weil die Kolonie von mehr Tieren angeflogen wird). Und wenn die Wanzen erst einmal da sind, bietet eine große Kolonie selbstverständlich hervorragende Vermehrungs-Bedingungen.
Beschreibung der Grafiken: Die Grafiken zeigen sowohl die Häufigkeit aggressiver Auseinandersetzungen als auch die erfolgreichen Vertreibungen anderern Gruppen bei einer Affenart in Abhängigkeit von der Gruppengröße.
Beschreibung des Verlaufs: Je größer die Gruppe, desto häufiger erfolgen aggressive Auseinandersetzungen, desto häufiger werden aber auch andere Gruppen erfolgreich vertrieben.
Datei:Gruppe Opt ML2.jpg
Die optimale Gruppengröße liegt dort, wo sich die Kurven von Nutzen und Kosten schneiden. Kleinere Gruppen hätten einen kleineren Nutzen, größere Gruppen höhere Kosten. Dieses Prinzip, dass es eine mittlere Gruppengröße gibt, bei der der Nutzen relativ hoch und die Kosten relativ niedrig sind, nennt man Optimalitäts-Modell.
Wenn sich wenige Räuber im Gebiet aufhalten, ist auch der Druck nicht so groß. Auch wenn es sich bei der Grafik nur um theoretische Überlegungen handelt, findet man dazu passende Phänomene in der Natur: In Gebieten mit mehr Räubern sind die Gruppen von Beutetieren tatsächlich im Durchschnitt größer als in Gebieten mit wenigen Räubern.
- Die Kosten nehmen (im Idealfall) linear zu. Die Kosten eines Reviers bestehen hauptsächlich darin, die Grenzen zu verteidigen, also z.B. Zeit darauf zu verwenden, an den Grenzen entlang zu patrouillieren. Nimmt man z.B. ein kreisrundes Revier an, nehmen die Grenzen (der Umfang) linear mit dem Faktor 2*pi*r zu.
- Der Nutzen nimmt zunächst mit steigender Fläche zu, weil mehr angebaut werden kann etc. Allerdings wird der Anstieg bei sehr großen Flächen immer weniger relevant. Stellt euch vor, der Gruppe gehört die halbe Welt. Nahrung ist im Überfluss vorhanden. Versteck- und Schlafmöglichkeiten gibt es unzählige. Wenn man der Gruppe nun die ganze Welt zur Verfügung stellen würde, hätte das quasi keinen Mehrwert.
Datei:Revier Opt ML2.jpg
Dort wo der Abstand zwischen Kosten und Nutzen am größten ist. (Nur in dem hier gezeichneten Fall. Wurde die Grafik so gezeichnet, dass die Kosten-Linie immer über der Nutzen-Linie liegt, dann ist die optimale Revier-Größe dort, wo der Abstand am kleinsten ist)
Die Grafik zeigt die durchschnittliche Anzahl an Nachkommen bei zwei Gruppen von Florida-Buschhähern in den Jahren 1987 und 1988 (und insgesamt). Verglichen wird die Gruppe der Vögel, die ihren Helfer verloren haben mit der Gruppe, die ihren Helfer behalten haben. Die Anzahl der Nachkommen ist in der Gruppe mit Helfer deutlich höher. Der Helfer hat für das brütende Paar also tatsächlich einen großen Vorteil. (Aber für sich selbst?)
Kurz zusammengefasst spielt hier der Begriff "indirekte Fitness" die entscheidende Rolle. Vereinfacht ausgedrückt: Die Helfer sind oft mit dem brütenden Paar verwandt. Das bedeutet sie haben statistisch gesehen einen gewissen Teil der Gene gemeinsam. Der Helfer sorgt mit seinem "Helfen" also dafür, dass ein Teil seiner Gene (also auch die, die das "Helfen" verursachen) in die nächste Generation gelangt auch ohne, dass er sich selbst fortpflanzt.
Außerdem werden Helfer im nächsten Jahr von Weibchen bevorzugt, was den Fortpflanzungserfolg der Helfer stark erhöht.
Beschreibung der Grafiken: Die Grafik zeigt die Häufigkeit gegenseitigen Lausens in Abhängigkeit vom Verwandtschaftsgrad.
Beschreibung des Verlaufs: Je höher der Verwandtschaftsgrad, desto häufiger wird gelaust.
Erklärung des Zusammenhangs: Man kann hier mit indirekter Fitness argumentieren: Derjenige der laust, hat zunächst Kosten (er muss Zeit aufwenden, die er nicht für Nahrungssuche, Partnersuche etc. verwenden kann). Der gelauste Affe hat Vorteile (Parasiten werden entfernt). Sind die sich lausenden Tiere jedoch verwandt, trägt die Verhaltensweise dazu bei, dass die Gene des lausenden Tiers, die sich aufgrund der Verwandtschaft teilweise auch im gelausten Tier befinden, größere Chancen haben, in die nächste Generation zu gelangen.
Die Hamilton-Ungleichung kann man hier noch anführen. Sie ist allerdings nicht generell anwendbar, daher gehe ich nicht weiter darauf ein.
Beschreibung der Grafiken: Die Grafik zeigt die für Jungtiere herbeigeschaffte Menge Futter (in Kilokalorien) von den Eltern und primären bzw. sekundären Helfern.
Beschreibung des Verlaufs: Die Eltern schaffen sehr viel Nahrung herbei (das Weibchen etwas weniger, weil es auch noch brütet), primäre Helfer fast so viel wie der eigene Vater, sekundäre Helfer tragen nur geringfügig zur Ernährung der Jungtiere bei.
Salopp könnte man auch sagen: Sekundäre Helfer reißen sich jetzt nicht gerade ein Bein aus...
Auch sekundäre Helfer haben im 2. Jahr einen Fitnessgewinn.
Reziproker Altruismus könnte stark vereinfacht mit: "Hilfst Du mir, helf ich Dir!" veranschaulicht werden. Die Vampirfledermäuse im Text helfen anderen häufiger, wenn ihnen von den zu helfenden bereits einmal geholfen wurde. Tatsächlich zeigen auch psychologische Studien beim Menschen einen ähnlichen Effekt: Berufsgruppen, die anderen helfen (Feuerwehrmänner, Krankenschwester etc.) genießen in der Regel einen sehr guten Ruf. Allerdings kann man beim Menschen hohes Ansehen nicht zwangsläufig mit höherem Fortpflanzungserfolg gleichsetzen.
Sozialverhalten
- Kattas bilden individualisierte, geschlossene Verbände. (Warum? Individualisiert bedeutet, die Tiere kennen sich untereinander persönlich. Das ist hier zwingend erforderlich, sonst könnten die Tiere die Rangordnung nicht einhalten.
- Die verschiedenen Tiere auf einer Blüte bezeichnet man als Aggregation. Es gibt keine Bindung oder Beziehung zwischen den Tieren. Sie befinden sich nur aufgrund eines äußeren Umweltfaktors (dem Nektar) zusammen an diesem Ort.
- Das Küken ist der Sender. Die Information könnte mit "ich bin allein, hilflos und brauche Schutz" beschrieben werden. Diese Information wird codiert und in Form von Lauten und auch durch das Wedeln mit den Flügel geäußert. Das sind Signale (akustische und optische). Der Empfänger ist die Henne, die diese Signale wieder in die ursprüngliche Information decodiert. Die Henne kann offensichtlich nur akustische Signale decodieren. Dies zeigt der Versuch mit dem Tonband. Die optischen Signale können von der Henne nicht verarbeitet werden (das zeigt der Versuch mit der Glasglocke).
- Eine Übersicht über die verschiedenen Signalarten mit Beispielen und deren Vor- bzw. Nachteile findet ihr im Skript.
Arbeitsaufträge vom 17.03., zu bearbeiten bis 20.03.
- Macht eine Pause – holt euch einen Kaffee (o.ä.)!
Corona-Sonderregeln Q11
Die folgenden Regeln bezogen sich auf die Situation der Q11 im Schuljahr 2020/2021.
Chemie: chemische Reaktionsgleichungen aufstellen
Distanzunterricht Di, 11.05.
Da ich heute (Di, 11.05.) und morgen (Mi, 12.05.) aufgrund des Abiturs stark in organisatorische Aufgaben an der Schule eingebunden bin, müsst ihr an diesen beiden Tagen leider alleine klar kommen. Vergesst aber auf keinen Fall am Dienstag bis spätestens 08:15 Uhr eure Rückmeldung auf den "Start-in-den-Tag"-Auftrag im Schulmanager!
Ihr erhaltet hier drei Arbeitsaufträge für die drei Chemie-Unterrichtsstunden. Ich empfehle euch, jeden Arbeitsauftrag in der Zeit zu erledigen, die angegeben ist. Wenn ihr unbedingt eine andere Reihenfolge wählen wollt: Von mir aus. Für zwei Arbeitsaufträge erhaltet ihr auch im Schulmanager einen Auftrag, auf den ihr bitte eure entsprechend passende Lösung hochladet:
- Dienstag, 1. Std. (08:00 - 08:45 Uhr): Knobelaufgaben auf S. 132 lösen - Abgabe eines Lösungsvorschlags im Schulmanager erforderlich!
- Dienstag, 2. Std. (08:45 - 09:30 Uhr): Abschließende Rätsel zum gesamten bislang behandelten Stoff in org. Chemie
- Mittwoch, 2. Std. (09:45 - 10:30 Uhr): Versuch "CO2-Löscher" durchführen und Aufgaben dazu bearbeiten - Abgabe eines Lösungsvorschlags im Schulmanager erforderlich! Achtung: Die Aufgaben lassen sich auch lösen, wenn man den Versuch nicht durchgeführt hat (z.B. weil ihr kein Backpulver, keinen Essig oder kein Teelicht zu Hause hattet)!
Distanzunterricht Di, 11.05.
Ihr dürft heute zwischen zwei Versuchen wählen, die ihr durchführen sollt. Selbstverständlich dürft ihr auch beide machen, aber verpflichtend ist nur einer:
- Den Versuch CO2-Löscher hattet ihr schon vor Weihnachten mal auf, damals aber freiwillig. Wenn ihr ihn damals nicht gemacht habt: Auf geht´s :).
Am Ende des Versuchs ist eine Aufgabe gestellt, die ihr bitte bearbeitet und als Antwort auf den Arbeitsauftrag im Schulmanager schickt. - Der Versuch Apfel oxidieren ist neu. Hier sollt ihr am Ende keine Aufgabe bearbeiten, sondern es geht darum, den Versuch in Form eines "wissenschaftlichen Versuchsprotokolls" möglichst sachlich zu dokumentieren. Denkt immer daran: Ein Versuchsprotokoll besteht aus den Teilen "Versuchsaufbau/Durchführung" (hier wird beschrieben, was man getan hat), "Ergebnisse" (hier dokumentiert man in Wort und Bild die Ergebnisse des Versuchs - ohne dafür schon eine "Erklärung" zu geben) und "Erklärung/Diskussion" (hier versucht man unter anderem, die Ergebnisse zu erklären).
Distanzunterricht Donnerstag, 20.05., 8.Std.
Distanzunterricht Dienstag, 18.05.
Distanzunterricht Dienstag, 18.05.
Heute mal was kreatives! Aber schon auch eine fachliche Vorbereitung auf das letzte Kapitel in diesem Schuljahr: Biomoleküle.
In diesem letzten Kapitel sollt ihr vieles, was ihr über organische Verbindungen bisher gelernt habt auf Moleküle übertragen, die für Lebewesen eine wichtige Rolle spielen. Tatsächlich solltet ihr in Biologie über diese Moleküle bereits gesprochen haben. Und genau aus diesem Grund bekommt ihr jetzt auch diese Aufgabe gestellt: Verarbeitet euer bereits vorhandenes Wissen über die Kohlenhydrate, Fette und Eiweiße zu einem ästhetisch anspruchsvollen, wissenschaftlichen Poster!
Wissenschaftliche Poster sind zu einem beliebten Mittel geworden, um kleinere (aber auch größere) Forschungsarbeiten übersichtlich und anschaulich zu präsentieren. Wenn ihr euch genauer über "wissenschaftliche Poster" informieren wollt, dann könnt ihr z.B. folgenden Links folgen:
- Die Studienwerkstatt der Uni-Bremen hat ein pdf-Dokument mit etlichen Tipps zusammengestellt: Hier klicken
- In dem pdf-Dokument sind auch zwei Seiten verlinkt, auf denen man bereits fertige wissenschaftliche Plakate anschauen kann: Zum Beispiel hier oder hier
- So ein richtig wahnsinnig schönes yt-Video habe ich auf die Schnelle leider nicht gefunden. Ihr könnt natürlich "wissenschaftliches Poster" bei Google oder Youtube eingeben und ihr werdet tausende von Treffern erhalten, aber die ersten fünf, die ich mir angeschaut habe, hatten alle irgendwelche Haken.
Ein paar einfache Tipps:
- Verwendet ein Präsentationsprogramm, um ein Poster zu erstellen. Hier lassen sich Texte, Bilder, Grafiken etc. am einfachsten anordnen und formatieren.
- Hochformat ist günstiger (Entwurf --> Foliengröße --> Benutzerdefinierte Foliengröße --> "4:3" und "Hochformat" auswählen)
- Geht sparsam mit grellen Farben und/oder Kontrasten um. Bleibt am besten in einer "Farbfamilie".
- Poster werden in der Regel relativ groß ausgedruckt (DIN A2, A1 oder sogar A0), daher könnt ihr auch sehr kleine Schriftgröße (10pt) verwenden. Diese sind immer noch gut lesbar. ABER ACHTUNG:
- Niemand will ein Poster lesen, das Gigatonnen an Text enthält! Versucht eure fachlichen Inhalte gut zu veranschaulichen.
Inhalt:
- Als Ausgangspunkt könnt ihr eure Biologie-Schulbuch verwenden (S. 18, 19)
- Ihr könnt natürlich auch im Internet recherchieren.
- Bleibt inhaltlich aber bei dem, was ihr schon gelernt (inzwischen aber vielleicht wieder vergessen) habt.
- Zum Veranschaulichen eurer Inhalte könnt ihr selbst Fotos machen (z.B. von Nahrungsmitteln), selbst Symbole erstellen (ähnlich wie die Abbildungen auf S. 18 im Bio-Schulbuch) oder auch Grafiken aus dem Netz verwenden (z.B. Gehalt von ungesättigten Fettsäuren in verschiedenen Ölsorten)
Das folgende Plakat wurde mit PowerPoint erstellt und enthält keinerlei sinnvollen Inhalt. Es geht lediglich darum, zu zeigen, wie eine grundsätzliche Aufteilung aussehen könnte:
Verwendet nicht mehr als 90min. für diesen Arbeitsauftrag! Man kann sicher deutlich mehr Zeit investieren, um immer mehr Details zu erzeugen, aber ihr sollt auch lernen, mit der Ressource Zeit effektiv umzugehen. Ich empfehle daher zunächst das Plakat in Grundzügen zu entwerfen und je nach zur Verfügung stehender Zeit nach und nach Aspekte zu vertiefen, zu verfeinern oder optisch aufzuhübschen. Beim "linearen Arbeiten" (das heißt: Ich fange oben auf dem Plakat an und mache alles sofort super genau und super schön) kann es leicht passieren, dass die zur Verfügung stehende Zeit aufgebraucht ist und das Plakat aber noch lange nicht fertig wird. Das sollte nicht bessern.
Speichert die Präsentation als pdf-Datei ab und schickt sie mir als Antwort auf den Arbeitsauftrag im Schulmanager. Wir hören uns morgen (Mittwoch, 19.05.) in einer Videokonferenz.
Distanzunterricht Montag, 17.05.
Heute ein paar anspruchsvollere Aufgaben zum Thema Redoxgleichungen. Notiert eure Lösungen bitte auf einem Blockblatt, wir besprechen alles am Donnerstag in der 6. Std.
Achtung: Bei sämtlichen hier besprochen Prozessen werden immer nur Teile der chemischen Gesamtgleichung betrachtet. Das vollständige Aufstellen einer Redoxgleichung, so dass auf beiden Seiten des Reaktionspfeils tatsächlich die gleiche Anzahl von Teilchen steht, erfordert etwas Geschick und wird erst nach den Pfingstferien besprochen!