Führt den folgenden Versuch durch. Eine Dokumentation ist diesmal nicht nötig, aber am Ende des blauen Kastens befindet sich eine Aufgabe, die ihr bearbeiten sollt. Das könnt ihr auch, wenn ihr den Versuch nicht durchgeführt habt. Ich erwarte eure Lösung als Antwort auf einen Arbeitsauftrag im Schulmanager.
Führt den folgenden Versuch durch. Eine Dokumentation ist diesmal nicht nötig, aber am Ende des blauen Kastens befindet sich eine Aufgabe, die ihr bearbeiten sollt. Das könnt ihr auch, wenn ihr den Versuch nicht durchgeführt habt. Ich erwarte eure Lösung als Antwort auf einen Arbeitsauftrag im Schulmanager.
Wir werden die Nachmittagsstunde am Donnerstag weiterhin dazu nutzen, Versuche durchzuführen und zu dokumentieren. Für die Oberstufe stellt das eine wichtige Grundfähigkeit dar. Ihr dürft heute wählen, welchen Versuch ihr machen wollt. '''Einen müsst ihr aber machen!''' Ihr erhaltet gegen 13:30 Uhr einen Arbeitsauftrag über den Schulmanager. Als Antwort auf diesen Arbeitsauftrag müsst ihr die Dokumentation eures Versuchs ('''Ergebnis'''-Beschreibung, auch Foto etc. + '''Erklärung''') schicken. Versucht bitte alles in einer Datei zu schicken. Wenn ihr also Bilder macht, dann fügt die in ein Word-Dokument ein und schreibt darunter eure Erklärung. Das letzte Mal bei der Dokumentation des Kresse-Versuchs hat das eigentlich bei den meisten schon wirklich sehr gut geklappt.<br>
Wir werden die Nachmittagsstunde am Donnerstag weiterhin dazu nutzen, Versuche durchzuführen und zu dokumentieren. Für die Oberstufe stellt das eine wichtige Grundfähigkeit dar. Ihr dürft heute wählen, welchen Versuch ihr machen wollt. '''Einen müsst ihr aber machen!''' Ihr erhaltet gegen 13:30 Uhr einen Arbeitsauftrag über den Schulmanager. Als Antwort auf diesen Arbeitsauftrag müsst ihr die Dokumentation eures Versuchs ('''Ergebnis'''-Beschreibung, auch Foto etc. + '''Erklärung''') schicken. Versucht bitte alles in einer Datei zu schicken. Wenn ihr also Bilder macht, dann fügt die in ein Word-Dokument ein und schreibt darunter eure Erklärung. Das letzte Mal bei der Dokumentation des Kresse-Versuchs hat das eigentlich bei den meisten schon wirklich sehr gut geklappt.<br>
Videokonferenz: Verbesserung der Versuchsprotokolle
Distanzunterricht Donnerstag, 06.05., 8. Std.
Führt den folgenden Versuch durch. Eine Dokumentation ist diesmal nicht nötig, aber am Ende des blauen Kastens befindet sich eine Aufgabe, die ihr bearbeiten sollt. Das könnt ihr auch, wenn ihr den Versuch nicht durchgeführt habt. Ich erwarte eure Lösung als Antwort auf einen Arbeitsauftrag im Schulmanager.
CO2-Löscher
Ihr benötigt:
ein schmales Glas, in das gerade so ein Teelicht passt
ein Teelicht
ein größeres Gefäß, z.B. Messbecher
ein Geschirrtuch (o.ä.)
ein Päckchen Backpulver
Essig oder besser: Essigessenz
Durchführung:
Entzündet das Teelicht im schmalen Glas
Gebt das Backpulver in das große Gefäß und legt das Geschirrtuch bereit
Schüttet nun etwa 50 - 100mL Essig auf das Backpulver und bedeckt dann sofort das Gefäß mit dem Geschirrtuch. (Hinweis: Bei dem Versuch entsteht das Gas Kohlenstoffdioxid. Das ist schwerer als Luft und soll im Messbecher bleiben. Durch kleinste Luftverwirbelungen wird es aber aus dem Messbecher gespült. Mit dem Geschirrtuch soll das verhindert werden.
Wartet ab, bis die Gasentwicklung nachlässt. Euer Messbecher ist nun randvoll mit Kohlenstoffdioxid (was man aber nicht sehen kann).
Zieht nun vorsichtig das Geschirrtuch ab. Gießt nun das Kohlenstoffdioxid in das schmale Gefäß mit der Kerze. Achtung: Nicht den Essig in das schmale Gefäß gießen!
Beobachtung/Erklärung:
Da das Gas Kohlenstoffdioxid schwerer als Luft ist, wird es in das schmale Glas "fallen" und dort die Luft verdrängen. Eine Verbrennung ist in reinem Kohlenstoffdioxid nicht möglich. Daher sollte die Kerze erlöschen. Wenn ihr auf "Video" klickt, seht ihr eine Variante, so wie das Ergebnis aussehen könnte.
Einen Teilprozess bei der Reaktion von Zitronensäure mit dem Hauptbestandteil des Backpulvers, Natriumhydrogencarbonat, kann man vereinfacht so formulieren:
NaHCO3 + H3O+ --> CO2 + 2 H2O + Na+
Begründet unter Angabe von Oxidationszahlen, ob es sich bei diesem Vorgang um eine Redoxreaktion handelt!
Distanzunterricht Donnerstag, 06.05., 6. Std.
Videokonferenz: Verbesserung der Hausaufgabe
Distanzunterricht Montag, 03.05.
Redoxreaktionen mit Molekülen
Heute wird ein Problem gelöst, welches in der letzten Stunde aufgetaucht ist: Nach dieser Einheit solltet ihr in der Lage sein auch bei Molekülen zu entscheiden, ob eine Reduktion oder Oxidation stattgefunden. Schaut dazu zunächst das folgende Video (ca. 30min):
Bearbeitet dann die im Video gestellten Aufgaben:
(Das sollte noch locker innerhalb der 45min. Unterrichtszeit zu schaffen sein)
Bei der Elektrolyse von Wasser entsteht aus den gebundenen Sauerstoffteilchen im Wasser (H2O) elementares Sauerstoff-Gas (O2).
Bitte beachten: Es handelt sich hier nicht um eine vollständige, chemische Gleichung. Es wird nur ein Teilprozess beachtet!
Bei der Verbrennung Schwefel (S) entsteht unter anderem Schwefeltrioxid (SO3).
Bitte beachten: Es handelt sich hier nicht um eine vollständige, chemische Gleichung. Es wird nur ein Teilprozess beachtet!
Ob ihr die sechs Valenzelektronen des Schwefels als Punkte, Striche oder gemischt dargestellt habt, ist in diesem Zusammenhang nicht so wichtig.
Es wäre technisch sehr praktisch, wenn man aus Kohlenstoffdioxid (CO2) reinen Kohlenstoff (C) gewinnen könnte.
Bitte beachten: Es handelt sich hier nicht um eine vollständige, chemische Gleichung. Es wird nur ein Teilprozess beachtet!
Ob ihr die vier Valenzelektronen des Kohlenstoffs als Punkte, Striche oder gemischt dargestellt habt, ist in diesem Zusammenhang nicht so wichtig.
Was noch zu tun ist
Ladet den Hefteintrag und das im Video erwähnte Arbeitsblatt herunter:
Hefteintrag als pdf-Datei. Ausdrucken und ins Heft kleben oder abschreiben.
Als Hausaufgabe lest ihr im Buch die S. 138 - 139 und löst mind. 3 Aufgaben auf dem Arbeitsblatt
Distanzunterricht Donnerstag, 29.04., 8. Std.
Wir werden die Nachmittagsstunde am Donnerstag weiterhin dazu nutzen, Versuche durchzuführen und zu dokumentieren. Für die Oberstufe stellt das eine wichtige Grundfähigkeit dar. Ihr dürft heute wählen, welchen Versuch ihr machen wollt. Einen müsst ihr aber machen! Ihr erhaltet gegen 13:30 Uhr einen Arbeitsauftrag über den Schulmanager. Als Antwort auf diesen Arbeitsauftrag müsst ihr die Dokumentation eures Versuchs (Ergebnis-Beschreibung, auch Foto etc. + Erklärung) schicken. Versucht bitte alles in einer Datei zu schicken. Wenn ihr also Bilder macht, dann fügt die in ein Word-Dokument ein und schreibt darunter eure Erklärung. Das letzte Mal bei der Dokumentation des Kresse-Versuchs hat das eigentlich bei den meisten schon wirklich sehr gut geklappt.
Für Versuch 1 benötigt ihr:
Einen Apfel
Zitronensaft (frisch oder aus der Flasche)
Für Versuch 2 benötigt ihr:
Löwenzahnstängel (gibt es draußen in der Natur)
Apfel oxidieren
Durchführung:
Stellt Zitronensaft bereit (evtl. Zitrone auspressen).
Raspelt auf einer Reibe einen Apfel in kleine Stücke. Solltet ihr keine Raspel haben, dann schneidet den Apfel anders in so kleine Stücke wie möglich.
Verteilt die Apfelstücke auf zwei Untertassen. Das sind die beiden Ansätze, die ihr später miteinander vergleichen sollt.
Tropft auf den einen Ansatz Zitronensaft (nicht alles, ihr benötigt später den Saft noch einmal).
Stellt beide Ansätze für einige Minuten (20-30min) beiseite und vergleicht die Ansätze dann.
Dokumentation:
Ich nehme an, ihr wisst was passiert: Die Apfelmasse wird braun. Dokumentiert euer Ergebnis, so gut ihr könnt! Achtet auf die Kriterien, die wir bereits besprochen haben:
Bei Fotos sollten keine Gegenstände des Hintergrundes zu sehen sein!
Wenn ihr keine Kamera habt, die für Nahaufnahmen geeignet ist, versucht es doch mit einer Skizze (tatsächlich mit Stift und Blatt oder auch am PC)!
Bilder brauchen dringend eine aussagekräftige Abbildungsbeschriftung!
Erklärung:
Recherchiert, woher die Braunfärbung kommt. Eine Seite im Internet, die relativ kurz und dabei verständlich ist, gibt es z.B. hier: Zur Homepage - Wenn sich die Seite öffnet, erscheint in der Regel zunächst ein Fenster, in dem "Privatsphäre-Informationen" angezeigt werden. Klickt auf "Einstellungen verwalten" unten links. Deaktiviert alle grünen Haken die bei "Legitimes Interesse" stehen (sollten 9 Stück sein). Ich bin mir ziemlich sicher: NIEMAND hat ein legitimes Interesse daran, eure Aktionen im Internet zu verfolgen!
Versucht die auf der Seite beschriebenen Zusammenhänge zeichnerisch darzustellen! - Im Text ist zum Beispiel von Chinonen die Rede. Deren chemische Formel wisst ihr zwar nicht, aber ihr könnt ja ein Symbol verwenden, z.B. eine geometrische Figur wie ein Sechseck. Vielleicht schafft ihr es auf diese Weise sogar so etwas ähnliches wie eine Redoxgleichung darzustellen (natürlich ohne Koeffizienten oder Indizes).
Auf der Seite steht, dass man die Braunfärbung von Äpfeln auch nachträglich mit Zitronensaft wieder aufheben kann. Probiert das!
Löwenzahn-Kringel
Gebt bei einer Bilder-Suchmaschine die Begriffe "Löwenzahn Kringel" ein!
Sucht euch Löwenzahnstängel und versucht damit das auf den Bildern dargestellte Phänomen nachzumachen.
(Freiwillig:) Ordnet eure Löwenzahn-Kringel zu einem "Kunstwerk" an. Ihr dürft gerne andere "Objekte" zur Ergänzung verwenden. Wenn euch das zu albern ist, dann fotografiert einfach nur eure gekringelten Löwenzahn-Stängel als Ergebnis.
Recherchiert die Ursache für das Entstehen der Löwenzahn-Kringel!
Versucht mit zwei einfachen Skizzen den Effekt auf zellulärer Ebene darzustellen und zu erklären!
Distanzunterricht Donnerstag, 29.04., 6. Std.
Videokonferenz: Verbesserung der Hausaufgabe
Distanzunterricht Montag, 26.04.
Überprüft zunächst, ob ihr folgende Dinge erledigt habt:
Hefteintrag von letzter Stunde heruntergeladen: pdf-Datei
Versuch vom Donnerstag angesetzt, Ergebnisse festgehalten (in Wort und Bild) und Erklärung formuliert.
Falls ihr das noch nicht getan habt, müsst ihr das in euren Zeitplan für diese Woche noch einbauen. Am Donnerstag werden wir darüber sprechen!
Neuer Arbeitsauftrag:
In der letzten Online-Einheit hatte ich den Eindruck, dass bei manchen einige Grundlagen verloren gegangen sind. Daher heute ein paar Wiederholungsaufgaben.
Ladet zunächst das Arbeitsblatt herunter (ihr müsst es nicht ausdrucken, ihr könnt die Lösungen auf ein normales Blockblatt schreiben! Lest dann die einleitenden Texte hier und bearbeitet dann die Aufgaben. Für die jeweils erste Aufgabe eines Blocks ist ein Lösungsvorschlag verfügbar.
1. Erkennen, ob ein Salz oder molekular gebauter Stoff vorliegt
Ihr solltet wissen: Die Elemente im PSE können grob eingeteilt werden in Metalle und Nichtmetalle. In eurem Buch auf der letzten Seite ist „die Grenze“ zwischen diesen beiden Gruppen im PSE erkennbar. Metalle stehen eher links im PSE und besitzen in der Regel wenige Valenzelektronen. Um in Verbindungen Edelgaskonfiguration zu erreichen, werden diese abgegeben.
Bsp.: Magnesium steht in der zweiten Hauptgruppe, besitzt daher zwei Valenzelektronen. In Verbindungen (Salzen) haben die Magnesium-Atome diese zwei Elektronen abgegeben und liegen als Mg2+-Ionen vor.
Chem. Gleichung: Mg --> Mg2+ + 2e-
Nichtmetalle stehen eher recht im PSE und besitzen in der Regel mehr als vier Valenzelektronen. Um Edelgaskonfiguration zu erreichen, können sie z.B. Elektronen aufnehmen. In Salzen liegen daher negativ geladene Ionen vor.
Bsp.: Sauerstoff steht in der sechsten Hauptgruppe, besitzt daher sechs Valenzelektronen. In Verbindungen (Salzen) liegt es in der Regel als O2--Ion vor, da es zwei Elektronen aufgenommen hat.
Chem. Gleichung: O + 2e- --> O2-
Salze sind oft Verbindungen aus Metallionen und Nichtmetallionen. Ihr solltet Salze erkennen, benennen und ihre Ionen ableiten können!
Lösungen für die ersten Aufgaben auf dem Arbeitsblatt:
Natrium reagiert mit Sauerstoff zu Natriumoxid
Ist MgO ein Salz?
Ja! Magnesium ist ein typisches Metall (steht links im PSE) und Sauerstoff ein typisches Nichtmetall (steht rechts im PSE). Aufgrund der Hauptgruppen, in denen die beiden Elemente stehen, kann man ableiten, was für Ionen in dem Salz vorliegen müssen:
2. Redoxreaktionen
Ihr habt gelernt, dass bei Redoxreaktionen Elektronen ausgetauscht werden. Man kann daher eine Redoxgleichung in eine Oxidations- und eine Reduktionsgleichung unterteilen, bzw. bei den Edukten einer Reaktion festlegen, welcher Stoff Reduktions- und welcher Oxidationsmittel ist. Bei den Gleichungen zur Bildung von Salzen aus den Elementen (s. oben) ist das immer sehr einfach möglich. Bei einigen anderen Gleichungen etwas komplizierter. Oft funktioniert es aber, wenn man nach Salzen sucht und daraus die entsprechenden Ionen ableitet.
Lösung für die erste Aufgabe auf dem Arbeitsblatt:
Magnesium brennt unter Wasser weiter
Distanzunterricht Donnerstag, 22.04., 8. Std.
Osmotische Prozesse
Osmose bei Kartoffeln.
Der Prozess der Osmose begegnet euch im Alltag wahrscheinlich häufiger als ihr meint. Auch im Unterricht habt ihr SICHER (!) schon MEHRFACH (!) darüber gesprochen. Für den Fall, dass ihr es trotzdem vergessen haben solltet, hier ein kurzes Video: Hier klicken
Zusammenfassung: Diffusion: Teilchen verteilen sich freiwillig gleichmäßig im Raum (oder in einem Lösungsmittel). Der umgekehrte Prozess wird nicht beobachtet: Verteilte Teilchen konzentrieren sich nicht an einer Stelle. Osmose: Existiert eine semi-permeable Membran (dazu zählen auch Zellwände) können bestimmte Teilchen (hier: Wasser) diese passieren, andere nicht (hier: "Salz-Teilchen" oder generell "gelöste Teilchen"). Befinden sich auf der einen Seite der Membran viele gelöste Teilchen, die nicht durch die Membran können, strömen die anderen Teilchen (hier: Wasser) dorthin, um die Konzentration zu verdünnen.
Führt folgenden Versuch durch und macht Fotos von den einzelnen Schritten, damit ihr später ein anschauliches Protokoll erstellen könnt:
Material: 3 Gläser, Salz, Wasser (am besten destilliertes), Kartoffel
Schneidet aus einer Kartoffel drei gleich große, längliche Stäbchen (wie Pommes Frites), messt die Länge und legt sie beiseite (es geht auch mit einer Karotte).
Stellt in den drei Gläsern drei verschieden stark konzentrierte Salzlösungen her:
(reines) Wasser: 100g destilliertes Wasser (wenn nicht vorhanden: normales)
(physiologische) Kochsalzlösung: 99,1g destilliertes Wasser (wenn nicht vorhanden: normales) + 0,9g Salz (Eine Waage, die 0,9g abwiegen kann hat nicht jeder zu Hause, daher: 0,9g entsprechen ungefähr 2 Messerspitzen. Eine andere Möglichkeit wäre 991g Wasser und 9g Salz zu mischen. Dann habt ihr einen Liter Salzwasser, von dem ihr aber nur ein Glas voll braucht.)
stark konzentrierte Kochsalzlösung: 100g destilliertes Wasser (wenn nicht vorhanden: normales) + 1 Teelöffel Salz
Legt in jede Flüssigkeit einen Kartoffelstreifen
Wartet 30 - 240 min. (Je nach Dicke der Kartoffel)
Messt anschließend die Länge der Kartoffelstreifen und biegt die Streifen stark (versucht die beiden Enden zusammenzuführen).
Dokumentiert eure Ergebnisse anschaulich!
Formuliert eine wissenschaftliche Erklärung für eure Ergebnisse!
Distanzunterricht Donnerstag, 22.04., 6. Std.
Videokonferenz: Verbesserung der Hausaufgabe
Distanzunterricht Montag, 19.04.
Das Thema "Säuren und Basen" ist noch nicht ganz abgeschlossen. Die verbleibenden Teilgebiete eignen sich für den Distanzunterricht aber eher weniger. Daher möchte ich heute mit einem neuen Thema beginnen. Arbeitsaufträge:
Schaut das folgende Video (18:44min)!
Wenn ihr im Video dazu aufgefordert werdet, stoppt das Video und bearbeitet die unten stehenden Aufgaben. Schaut erst danach den Rest des Videos!
Lest als Hausaufgabe im Buch die S. 136 - 137 und bearbeitet die Aufgaben 2 und 3 (auf der S. 137)!
Ladet euch ganz zum Schluss den Hefteintrag herunter oder schreibt ihn ab: Hefteintrag als pdf-Datei
Ein neuer Rektionstyp: Die Redox-Reaktion
Hier das Video:
Aufgaben: Stelle für die folgenden Salzbildungsreaktionen zunächst die Gesamtgleichung auf, dann die Teilgleichungen zur Bildung der Ionen. Bestimme anschließend welche Teilgleichung einer Oxidation und welche einer Reduktion entspricht. Kennzeichne zum Schluss das Reduktions- und das Oxidationsmittel!
Kalium reagiert mir Fluor zu Kaliumfluorid
Aluminium reagiert mit Sauerstoff zu Aluminiumoxid
Magnesium reagiert mit Stickstoff zu Magnesiumnitrid
Distanzunterricht Donnerstag, 15.04., 6. Std.
Videokonferenz: Besprechung der Ergebnis-Dokumentation vom Kresse-Versuch
Distanzunterricht Donnerstag, 15.04., 8. Std.
Arbeitsauftrag: Recherchiert eine mögliche (evtl. sogar molekulare) Begründung, welche die Ergebnisse des Kresse-Versuchs erklärt.
Distanzunterricht Montag, 12.04.
Hallo 9e!
Willkommen zurück nach den Osterferien! - Gut, "Home-Schooling" ist jetzt wahrscheinlich nicht für alle das Gelbe vom Ei (sollte ein Witz sein, wegen Ostern...) aber was will man machen.
Zum Einstieg: Das folgende Bild zeigt noch einmal einen Versuchsaufbau, den ihr vor den Ferien ansetzen solltet.
Ich hoffe, ihr habt euch an die Anweisung gehalten. Macht heute bitte folgendes: Präsentation der Ergebnisse in Wort und Bild
Sucht eure besten Fotos aus.
Ordnet diese Fotos auf einer DIN-A4-Seite sinnvoll und übersichtlich an (entweder in einem Textdokument oder einer Folie eines Präsentationsprogrammes)
Es soll sich um die wissenschaftliche Dokumentation eurer Arbeit handeln. Daher achtet auf Seriosität und Sauberkeit. Die folgende Abbildung zeigt ein schlechtes Bsp. (links) und ein gutes Beispiel (rechts) aus einem anderen Zusammenhang.
Versucht anschließend das Ergebnis kurz und knapp (aber in ganzen Sätzen) zu beschreiben. Bitte achtet darauf, dass ihr das Ergebnis wirklich nur beschreibt, ihr sollt noch keine Erklärung abgeben oder eine Vermutung anstellen.
Euren Text könnt ihr noch mit auf die Seite schreiben, die auch schon die Bilder enthält.
Speichert eure Arbeit ab und schickt sie mir als Antwort auf einen Arbeitsauftrag im Schulmanager, den ihr um 08:00 Uhr bekommt.
Schulaufgabe am 07.12.2020 (für Gruppe B) Schulaufgabe am 08.12.2020 (für Gruppe A)
Prüfungsstoff: Neben Grundwissen, den Hefteinträgen und den Versuchsprotokollen eignen sich folgende Seite im Buch (Galvani Chemie 2) als Vorbereitung für die Schulaufgabe (chronologisch sortiert):
S. 20 - 21 Unterschied zwischen qualitativen und quantitativen Nachweisen
S. 22 - 24 Nachweismethoden
S. 25 - 26 Die Spektralanalyse
S. 92 - 93 Fällungsreaktionen
S. 54 - 55 Das Orbitalmodell (Die Inhalte dieser Seite werden nicht direkt in der Schulaufgabe abgefragt, aber zum Verständnis der nächsten Seiten sind sie meiner Meinung schon relevant.
S. 56 - 57 Der räumliche Bau von Molekülen
S. 63 - 64 Die polare Atombindung (ohne den letzten Absatz "Polarität und Dissoziationsenergie")
S. 65 Dipole
(S. 72 - 73 Zwischenmolekulare Kräfte - Wiederholung)
S. 76 - 77 Van-der-Waals-Kräfte
S. 74 - 75 Wasserstoffbrückenbindungen
S. 78 Einfluss zwischenmolekularer Kräfte auf Stoffeigenschaften
Versuchsprotokolle
Ausgewählte Versuchsprotokolle
Eine Musterlösung für das Versuchsprotokoll zur Übung vom 08.10. "Flammenfärbung von Na- und K-Salzen":
Text
Magnesium ist ein sehr reaktives Metall und wird an Schulen häufig in Form von langen Bändern verwendet. Sobald man ein Ende eines solchen Magnesium-Bandes kurz erhitzt, beginnt es mit dem Sauerstoff aus der Luft zu reagieren. Dabei entsteht sehr viel Hitze und Licht. Früher hat man daher Magnesium als „Blitzlicht-Pulver“ eingesetzt. Einmal gestartet, endet die Reaktion erst, wenn das gesamte Magnesium-Band „verbrannt“ ist. Übrig bleibt ein weißer Feststoff: Magnesiumoxid (MgO). Aufgaben
Stelle die chemische Reaktionsgleichung für den beschriebenen Prozess auf!
Ordne diese chemische Reaktion verschiedenen Gruppen zu: Beachte bei der einen Zuordnung den Energieumsatz und bei der anderen Zuordnung die Anzahl der Pro- und Edukte!
Zeichne das vollständig beschriftete Energie-Zeit-Diagramm dieser Reaktion!
Text + Grafik
Die folgende Grafik enthält viele Informationen. Leite aus dieser Grafik die folgenden Punkte ab: Aufgaben
Beschreibe mit einem schönen, deutschen Satz die ablaufende Reaktion!
Stelle die vollständig ausgeglichene Reaktionsgleichung auf!
Ordne die dargestellte Reaktion zwei Gruppen zu. Betrachte bei der ersten Zuordnung die an der Reaktion beteiligte Energie, bei der der zweiten Zuordnung die Anzahl der vorhandenen Pro- und Edukte!
Grundwissensaufgaben - Teil 2
Atombau
Bestimme mit Hilfe des PSE die Anzahl an Protonen, Neutronen, Elektronen und Valenzelektronen in einem Atom von Aluminium, Arsen und Antimon!
Finde in den Hauptgruppen des PSE das Element, bei dem ein Atome zwei Valenzelektronen und 50 Neutronen besitzt!
Salzgleichungen
Stelle die chemischen Gleichungen zur Bildung der folgenden Salze aus den Elementen auf: Kaliumfluorid (aus Kalium und Fluor), Berylliumoxid (aus Beryllium und Sauerstoff) und Natriumnitrid (aus Natrium und Stickstoff)
Moleküle
Zeichne die Valenzstrichformel der folgenden Moleküle: Sauerstoffdifluorid (OF2), Formaldehyd (CH2O) und Schwefelwasserstoff (H2S)
Atombau
Bestimme mit Hilfe des PSE die Anzahl an Protonen, Neutronen, Elektronen und Valenzelektronen in einem Atom von Bor, Brom und Barium!
Finde in den Hauptgruppen des PSE das Element, bei dem ein Atome drei Valenzelektronen und 14 Neutronen besitzt!
Salzgleichungen
Stelle die chemischen Gleichungen zur Bildung der folgenden Salze aus den Elementen auf: Lithiumfluorid (aus Lithium und Fluor), Magnesiumsulfid (aus Magnesium und Schwefel) und Magnesiumnitrid (aus Magnesium und Stickstoff)
Moleküle
Zeichne die Valenzstrichformel der folgenden Moleküle: Schwefeldifluorid (SF2), Phosphan (PH3) und Chlormethan (CH3Cl)
Cookies helfen uns bei der Bereitstellung von RMG-Wiki. Durch die Nutzung von RMG-Wiki erklärst du dich damit einverstanden, dass wir Cookies speichern.