6e Lernen zu Hause: Dezimalbrüchen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 53: Zeile 53:
  |3= Unterrichtsidee}}
  |3= Unterrichtsidee}}


{{Box |1= Merke: |2= Notiere dir bitte folgenden Merksatz in dein Schulheft!  <br>
{{Lösung versteckt |1= Endlicher oder periodischer Dezimalbruch: <br>
Fall 1: <br>
Die Division endet, der Rest der Division ist 0. <br>
Der Dezimalbruch hat somit eine bestimmte Anzahl an Nachkommastellen; einen solchen Dezimalbruch nennt man '''endlichen Dezimalbruch'''. <br> Beispielsweise  <math> 3 \over 8 = 0,375 </math> ist ein endlicher Dezimalbruch. <br>
Fall 2: <br>
Die Division endet nicht, der Rest der Division ist nie 0. <br> So nennt man diesen Dezimalbruch '''unendlichen Dezimalbruch'''. <br>
Besonderheit: Wiederholt sich nach einigen Schritten ein anderer Rest (ungleich 0), dann hat der Dezimalbruch eine Ziffer bzw. eine Zifferngruppe, die sich stets wiederholt. Einen solchen Dezimalbruch nennt man periodischen Dezimalbruch. <br>
|2= Merksatz anzeigen | 3= Merksatz verbergen}}
|3= Merksatz}}





Version vom 5. Februar 2021, 15:19 Uhr

08.02.2021

Falls du es am Donnerstag nicht mehr geschafft hast, bearbeite bitte zuerst den Ausblick!
Falls du die Aufgabe bereits bearbeitet hast, starte direkt mit der nachfolgenden Übung.

Ausblick: Du hast es dir sicher schon gedacht, auch beim Rechnen mit Dezimalzahlen gelten nach wie vor die Rechenregeln "Klammern zuerst", "Potenz vor Punkt vor Strich", "von links nach rechts" und natürlich können Dezimalbrüche auch in Textaufgaben vorkommen...
Berechne die jeweilige Aufgabe im Kopf! Mit diesen Aufgaben kannst du testen, ob du Rechengesetze richtig anwendest und Textaufgaben richtig verstehst... Wenn du magst, kannst du dir hierbei freiwillig die jeweilige Aufgabe inklusive ihrer Lösung kurz ins Schulheft notieren.
Anmerkung: Pickerl = Sticker


Zur Übung:

Wie bereits am vergangenen Donnerstag erwähnt: Bearbeite B. S. 114/ 5 - wo steckt der Fehler...
Verbessere bitte deinen Lösungsvorschlag!
Falls dein Ergebnis ein anderes sein sollte, dann vergleiche bitte deine Lösung Schritt für Schritt mit der von mir!
Falls dir mein Lösungsvorschlag in der Darstellung zu klein sein sollte, kannst du einfach auf die beiden Rechtecke unten rechts im Bild klicken und es vergrößert sich.

Lösungsvorschlag B S 114 5.jpg


Zur Übung:
Und weiter geht es mit dem Üben...
Berechne schriftlich B.S. 115/ 10 b), d), f), h), j)! Mach bitte ein Foto von deiner Lösung und lade diese bitte noch heute im Schulmanager - Modul Lernen hoch. Danke!



Zur Erinnerung:

Dividend, Divisor, Quotient - was ist das? Aber das weißt du sicher noch!
Bearbeite bitte B. S. 115/ 15!
Verbessere bitte deinen Lösungsvorschlag!


Du weißt es sicher noch... Dividend : Divisor = Wert des Quotienten

a) 4,368 : 2,8 = "43,68 : 28" = 1,56

b) x : 3,25 = 1,09;
Berechne mit der Umkehraufgabe: und somit ist x = 3,5425.
Das tolle bei dieser Aufgabe ist, dass man mit der Umkehraufgabe gleich auch noch das Multiplizieren von Dezimalbrüchen wiederholt - du erinnerst dich: Ganz "normal" multiplizieren, nur eben Nachkommastellen beachten!

c) 33,9 : x = 13,56;
Berechne den Platzhalter x folgendermaßen..... x = 33,9 : 13,56 = "3390 : 1356" = 2,5



Wiederholung und Vertiefung:

Zur Erinnerung: Ein Bruchstrich ersetzt das "Geteilt-Zeichen" und umgekehrt... Anstelle von kann man auch 3 : 8 schreiben oder eben umgekehrt.
Mit diesem Wissen wandelst du nun bitte folgende Brüche in Dezimalbrüche um!
Schau dir bitte deine jeweiligen Ergebnisse genau an! Was fällt dir auf?

Hier nun noch die Brüche, die du rechnerisch in Dezimalbrüche umwandeln sollst:

a)
b)
c)
d)

Das tolle bei dieser Aufgabe, die Lösung dazu findest du in aller Ausführlichkeit in deinem Buch auf Seite 119/ Aufgabe 1!
Nimm dir einen Rotstift in die Hand und hake deine richtige Lösung ab oder korrigiere deine falsche Lösung.
Wichtig ist es bei dieser Aufgabe, dass du ganz klar mit der Lösung aus dem Buch vergleichst, was dir aufgefallen ist bzw. auffallen hätte müssen!
Damit meine ich, dass es Dezimalbrüche gibt, die an irgendeiner Nachkommastelle enden.
Es gibt aber auch Dezimalbrüche bei denen man unendlich lange weiter rechnen könnte.

Und dann gibt es noch Dezimalbrüche, die kann man auch unendlich lange weiter rechnen, nur diese sind besonders, hier wiederholen sich die Ziffern der Nachkommastellen...
Ich hoffe sehr, dass du diese Erkenntnis bei deiner Berechnung der Aufgaben auch gewinnen konntest! Lies dies bitte genau in der Lösung auf S. 119/ Aufgabe 1 nach!


Merke:

Notiere dir bitte folgenden Merksatz in dein Schulheft!


Endlicher oder periodischer Dezimalbruch:

Fall 1:
Die Division endet, der Rest der Division ist 0.
Der Dezimalbruch hat somit eine bestimmte Anzahl an Nachkommastellen; einen solchen Dezimalbruch nennt man endlichen Dezimalbruch.
Beispielsweise ist ein endlicher Dezimalbruch.

Fall 2:
Die Division endet nicht, der Rest der Division ist nie 0.
So nennt man diesen Dezimalbruch unendlichen Dezimalbruch.

Besonderheit: Wiederholt sich nach einigen Schritten ein anderer Rest (ungleich 0), dann hat der Dezimalbruch eine Ziffer bzw. eine Zifferngruppe, die sich stets wiederholt. Einen solchen Dezimalbruch nennt man periodischen Dezimalbruch.









Nun wird aus FREIWILLIG Hausaufgabe, für diejenigen, die es letzten Donnerstag noch nicht gemacht haben... - Zur Vertiefung:

Potenzen und Dezimalbrüche...
Berechne jeweils und ordne das richtige Ergebnis zu. Achte hierbei auf die richtige Anzahl der Nachkommastellen!

10.02.2021

11.02.2021