Benutzer:Thomas Lux/Test Q11-Struktur: Unterschied zwischen den Versionen

Aus RMG-Wiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
(Sozialverhalten gelöscht und auf eigene Unterseite gezogen)
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Box-spezial
|Titel=<span style="color:#00F">'''Sexualverhalten'''</span>
|Inhalt=
Das Thema "Sexualverhalten" im Tierreich ist sehr vielfältig und oft auch für Schüler spannend. Es existieren sehr (wirklich sehr sehr) viele Studien zu diesem Thema. Die Anzahl von verschiedenen Strategien, die eigenen Gene erfolgreich in die nächste Generation zu bringen, sind nahezu endlos.<br>
In dieser Einheit werden allenfalls die Grundlagen angerissen. Wir beginnen mit einigen Begriffen, die ihr vielleicht kennt: '''Monogamie''' und '''Polygamie'''. Diese Begriffe beschreiben "Paarungssysteme". Man kann mit weiteren Begriffen allerdings noch etwas genauer unterscheiden. Lest im Buch auf der Seite 143 die rechte Spalte, anschließend die mittlere, hellblaue Zusammenfassung der Begriffe und recherchiert im Netz für jeden Begriff zwei konkrete Tierarten, die sich diesen Begriffen zuordnen lassen. (Kann etwas dauern! Bitte nicht übertreiben. Nach 5 Minuten intensiver Suche dürft ihr abbrechen, sofern ihr noch nicht alles gefunden habt.)
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Sexualverhalten_Paarungssysteme_Beispiele.jpg|600px]]<br>


Falls ihr die Tiere nicht kennt: Recherchiert selbst nach einem Bild!
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Geschlechterkonflikt'''</span>
|Inhalt=
Die Gründe, die dazu führen, dass bei bestimmten Arten das eine oder andere Paarungssystem ausgebildet wird, sind vielfältig und nicht immer einfach zu erforschen. Etliche Untersuchungen legen jedoch nahe, dass Umweltfaktoren wie Habitatbeschaffenheit und Nahrungsverteilung  eine wichtige Rolle spielen können.<br>
Wichtig zu verstehen ist in diesem Zusammenhang auch, dass für Männchen und Weibchen unterschiedliche Strategien erfolgreich sein können und das resultierende Paarungssystem bei einer Art unter Umständen ein Kompromiss ist. Interpretiert dazu auf S. 147 die beiden kleinen Grafiken am rechten Rand.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Grafiken zeigen den Fortpflanzungserfolg gemessen als Anzahl der Nachkommen bei Drosophila-Männchen und -Weibchen in Abhängigkeit von der Anzahl an Paarungspartnern. Man erkennt, dass Männchen einen umso größeren Fortpflanzungserfolg haben, je mehr Weibchen sie begatten. Bei Weibchen bleibt der Fortpflanzungserfolg gleich, unabhängig davon mit wie vielen Männchen sie sich paaren.<br>
Die '''Erklärung''' müsstet ihr hier raten (besser: '''durch Überlegen sinnvoll ableiten'''): Die Anzahl der Eier, die Weibchen legen ist immer gleich. Egal mit wie vielen Männchen sich das Weibchen paart. Je mehr Weibchen ein Männchen allerdings begattet, umso mehr Eier werden gelegt, die von Spermien dieses Männchens befruchtet wurden.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Investment'''</span>
|Inhalt=
Etliche Tiere investieren viel in die Balz oder in Körpermerkmale, die eine erfolgreiche Fortpflanzung versprechen. Paradebeispiele dafür sind etliche Paradiesvögel, bei denen die Männchen oft extreme Schmuckfedern tragen. (An dieser Stelle sei kurz auf das Handicap-Prinzip verwiesen, das im Skript bereits ausführlicher beschrieben wurde). '''Dieses Investment''' oder einfacher '''"Der Aufwand"''' lohnt sich jedoch! Interpretiert dazu die folgende Grafik, die Daten aus einem Versuch enthält, bei der Männchen einer Paradiesvogelart die Schwanzfedern künstlich verkürzt oder verlängert wurden!<br>
[[Datei:Sexualverhalten_Paradiesvogel_Schwanzfederlänge.jpg|600px]]
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Grafik zeigt den Fortpflanzungserfolg von Paradiesvogel-Männchen bei denen künstlich die Schwanzfederlänge verändert wurde im Vergleich zu unmanipulierten Tieren. Je länger die Schwanzfedern desto größer ist der Fortpflanzungserfolg.<br>
'''Erklärung:''' Die langen Schwanzfedern scheinen für die Weibchen ein Signal zu sein, dass das Männchen ein "guter" Sexualpartner ist. Wahrscheinlich ist das auch so. Denn die Schwanzfedern sind für das Fliegen im Dschungel sicher ein Nachteil. Auch sind die Männchen damit viel auffälliger und werden von Feinden leichter entdeckt. Insofern scheinen Männchen, die "es sich leisten können, solche Federn zu produzieren" tatsächlich sehr erfolgreich, gesund und ''fit'' (im evolutionären Sinne, also "passend") zu sein.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Investment'''</span>
|Inhalt=
* Interpretieren Sie im Buch auf der Seite 143 die Grafik oben rechts!
* Lesen Sie dann den Abschnitt unten links über "Tanzfliegen"
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Grafik zeigt die Kopulationsdauer (und damit die Menge der übertragenen Spermien) in Abhängigkeit von der Größe des Brautgeschenks. Je größer das Brautgeschenk, desto länger die Kopulationsdauer (und damit im Schnitt auch der Fortpflanzungserfolg). <br>
'''Erklärung:''' Das Weibchen lässt die Kopulationsdauer zu, solange sie das Brautgeschenk frisst. Es ist für das Männchen also von Vorteil, ein möglichst großes Beutetier als Brautgeschenk zu fangen. Dies gelingt vermutlich überwiegend den besonders ''fit''-ten Männchen (fit im Sinne der Evolution: die am besten angepassten).<br>
''Hinweis:'' Im Buch ist hier ein sehr schönes Beispiel für Ritualisierung bei manchen Tanzfliegenarten beschrieben. Das Überreichen eines Brautgeschenkes verliert seine ursprüngliche Bedeutung (um das Weibchen zu beschäftigen, damit sich das Männchen mit ihm paaren kann) und hat jetzt nur noch Signalcharakter.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Investment'''</span>
|Inhalt=
* Interpretieren Sie die Grafik auf S. 146 unten rechts.
* Lesen Sie dann den Text (ganze Seite S. 146)
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Grafik zeigt den Fortpflanzungserfolg von See-Elefanten-Männchen und Weibchen gemessen als Anzahl entwöhnter Jungtiere in Abhängigkeit vom Rang des Tieres. Man erkennt: Beim Männchen nimmt der Fortpflanzungserfolg mit niedriger werdendem Rang extrem rasch ab. Im Prinzip haben nur die ranghöchsten Tiere einen Fortpflanzungserfolg. Bei Weibchen ist der Fortpflanzungserfolg quasi kaum vom Rang abhängig.
'''Erklärung:''' Genaue Erklärung steht im Text. Bemerkenswert: Hier wird deutlich wie essentiell für die Männchen der Kampf ums Weibchen ist, während die Weibchen überhaupt keinen Vorteil von aggressiven Verhaltensweisen untereinander hätten.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Aggressionsverhalten'''</span>
|Inhalt=
Die heutige Einheit soll einen Themenkomplexe behandeln, der eng mit dem Leben in der Gruppe verknüpft sind: '''Das Aggressionsverhalten'''. <br>
Nachdem alle Tiere einer Art die gleichen fundamentalen Bedürfnisse haben, entsteht logischerweise eine Konkurrenz um bestimmte Ressourcen. Zumindest wenn diese begrenzt sind und/oder viele Tiere (z.B. in einer Gruppe) im gleichen Gebiet leben. Folgende Fragen sollen in dieser Einheit beantwortet werden:
* Welche Formen / Stufen von Aggression gibt es?
* Welche Möglichkeiten gibt es aggressives Verhalten zu beenden?
* Welche Theorien gibt es, die aggressives Verhalten beim Menschen erklären?
* Welchen Sinn hat aggressives Verhalten?
<br>
'''Welche Formen / Stufen von Aggressionen gibt es?'''<br>
Grundsätzlich unterscheidet man '''interspezifische''' von '''intraspezifischer''' Aggression. Diese Begriffe tauchten bereits beim Thema Kommunikation auf. Stelle eine begründete Vermutung auf, was diese Begriffe bedeuten und nenne jeweils zwei frei gewählte Beispiele aus der Lebensumwelt!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Vorsilbe '''"inter..."''' bedeutet ''zwischen'', '''"intra..."''' bedeutet ''innerhalb''. Die Silbe '''"spezifisch"''' meint hier im biologischen Sinne ''Art''. <br>
'''Intraspezifische Aggression''' wären also aggressive Verhaltensweisen innerhalb einer Art, z.B.: Zwei Amseln streiten im Garten um ein Revier; ein ranghöheres Raubtier droht einem rangniedrigeren Tier beim Fressen der gemeinsam erlegten Beute weg (z.B. bei Wölfen). <br>
'''Interspezifische Aggression''' bezeichnet dann Verhaltensweisen, die zwischen Arten auftritt, z.B. ein Raubtier jagt ein Beutetier (Löwe und Kaffernbüffel) oder eine Mutter verteidigt ihre Eier/Jungen gegen artfremde Angreifer (Adelie-Pinguin-Mutter hackt nach Raubmöwe)<br>
Für den Fall, dass ihr die genannten Tiere nicht kennt:
<gallery>
Amseln_kämpfend.JPG|Kämpfende Amseln
Timber_wolves_fighting.jpg|Sich drohende Wölfe
Lioness_vs_Cape_Buffalo.jpg|Löwin fängt Büffel
Pygoscelis_adeliae.png|Adeliepinguiune
Brown_Skua_snatches_Gentoo_Penguin_Chick_(5751218963).jpg|Raubmöwe erbeutet jungen Eselspinguin
</gallery>
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''intraspezifische Aggression'''</span>
|Inhalt=
Hier soll es überwiegend um die '''intraspezifische Aggression''' gehen. Als Beispiel betrachten wir Teile vom Balzverhalten von Hirschen. Es steht also die "Ressource Weibchen" im Vordergrund, um die sich mehrere Männchen streiten.
* Lest dazu im Buch die S. 128 Abs. 1-5 und die S. 129!
* Schaut anschließend das folgende Video!
* Überprüft, ob ihr alle im Text genannten Aggressionsstufen erkennen konntet!
{{#ev:youtube |cpTIoY4SRqY|800}}
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
* '''Imponierverhalten''': Röhrduell, Prarallelgehen
* '''Kommentkampf''': Geweihe ineinander verhaken. Schieben
* '''Beschädigungskampf''': ''- konnte hier nicht erkannt werden -''
|Lösung|Lösung verbergen}}
{{Box-spezial
|Titel=<span style="color:#00F">'''Imponieren'''</span>
|Inhalt=
Etwas weitergehende Ausführungen zu den einzelnen Stufen: '''Imponieren'''.
* Es handelt sich um die '''schwächste Form''' aggressiven Verhaltens,
* Ein '''Kampf''' wird oft '''lediglich angedeutet'''.
* Flieht ein Kontrahent bereits jetzt (z.B. weil er die Stärke des Gegners nun besser einschätzen kann), endet auch die Auseinandersetzung in der Regel. So können echte Kämpfe und damit Verletzungen vermieden werden.
* Oft spielt hier '''Ritualisierung''' (s. dort) eine Rolle, Stichwort: Ausdrucksverhalten.
<br><br>
Typisch für Imponier- oder Droh-Gesten sind:
* Das deutliche Präsentieren von '''"Waffen"''' (Zähnen, Krallen, Hörnern etc.)
* '''Vergrößern''' des Körperumrisses (durch Aufstellen von Haaren, Federn etc.)
* '''Warnäußerungen''' durch Laute und Farben (Fauchen, Präsentation von bunt gefärbten Körperpartien)
Beispiele:
<gallery>
Hippopotame_(Zoo_de_Berlin)_(6081008830).jpg|Flusspferde präsentieren ihre gigantischen Zähne (die sie für die Nahrungsaufnahme überhaupt nicht benutzen).
Hippopotamus_@_Barcelona_zoo.jpg|Kämpfende Flusspferde, bei der die Zähne zum Einsatz kommen (das ist dann kein Droh- bzw. Imponierverhalten mehr).
Snarl (60799974).jpeg|Auch Hanuman-Languren besitzen scharfe Eckzähne, die sie nur zum Drohen einsetzen. Sie ernähren sich rein vegetarisch.
Anolis_sagrei.jpg|Anolis spannen bei Anwesenheit eines Rivalen ihren gefärbten Kehlsack auf.
</gallery>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
{{Box-spezial
|Titel=<span style="color:#00F">'''Kommentkampf'''</span>
|Inhalt=
Ein Kommentkampf läuft nach bestimmten, ritualisierten Regeln mit besonderen Pariertechniken ab.
* Schutz des angegriffenen Körperteils (Bsp.: Wildschweine rammen sich gegen die Schulter, die mit einer dicken Schulterplatte geschützt ist),
* Normalerweise tödlichen Waffen werden nicht eingesetzt (Bsp.: Piranha: Verwenden im Kommentkampf anstatt der extrem spitzen Zähne die Flossen, um Stärke zu demonstrieren (Flossenschlag); Giftschlangen: statt sich mit ihren Giftzähnen zu beißen, umwinden sie sich mit ihren Körpern; Antilopen: Schlagen nicht mit Hörnern zu, sondern stemmen Stirn gegeneinander),
* Ein Kommentkampf endet bei Tieren mit hoher Fluchtbereitschaft (Ratten/Tauben) durch Flucht des Unterlegenen. Falls eine Flucht nicht möglich ist (z.B. weil zwei Tiere in einem Käfig gehalten werden, entsteht ein Ernstkampf)
* Bei sozial lebenden Tieren mit geringer Fluchtbereitschaft endet ein Kommentkampf durch Demuts- und Beschwichtigungsverhalten; auf diese Weise kann der Unterlegene sich rechtzeitig absetzen und in Sicherheit bringen und/oder seine aggressionsauslösenden Signale verbergen; oftmals sind diese Verhaltensweisen ritualisiert (z.B. Hunde legen sich auf den Rücken und präsentieren verwundbare Stelle (Kehle).
* Demutsverhalten löst häufig beim Überlegenen eine Tötungshemmung aus
<br><br>
Das erste Video zeigt zwei Sandrasselotter, die zu den giftigsten Schlangen (für den Menschen) überhaupt zählen. Trotzdem setzen sie ihre Giftzähne bei diesem Kommentkampf nicht ein, sondern versuchen sich gegenseitig auf den Boden zu drücken. (In diesem Video nicht besonders deutlich) <br>
{{#ev:youtube |EaQo5JMbKRA|800}} <br>
<br>
Spektakulärer sind die Kommentkämpfe der Zornnattern. Diese sind allerdings ungiftig. Das Video hat ein 20sekündiges Intro, dieses könnt ihr überspringen. <br>
{{#ev:youtube |s6rKk4IZM6Y|800}} <br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Beschädigungskampf'''</span>
|Inhalt=
Falls ein Kommentkampf nicht entschieden werden kann, geht dieser in einen Beschädigungskampf über! Es muss aber nicht immer erst ein Kommentkampf stattfinden.
* Ziel: Töten des Unterlegenen
* keine festen Regeln
* Beispiele gibt es bei Krebsen, Spinnen, Ratten, Löwen....
<br>
Ein sehr grausames Beispiel dafür, wie sich der Mensch diese genetisch bedingte Veranlagung bei manchen Tieren zu Aggressionsverhalten ausnutzt, sind Hahnenkämpfe. Fast weltweit verboten, finden sie immer noch z.B. auf den Philippinen statt: Zwei Hähne werden in eine Arena gesteckt. Die Tiere gehen solange aufeinander los, bis einer der beiden stirbt. In freier Wildbahn würde vermutlich der Unterlegene vorher versuchen zu fliehen. In der Arena kann er es aber nicht.<br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Welche Möglichkeiten gibt es aggressives Verhalten zu beenden?'''</span>
|Inhalt=
Die Möglichkeiten wurden bereits aufgezeigt: Bei Tieren, die z.B. in einem weitläufigen Gebiet leben und deren Zusammenhalt in der Gruppe nicht groß oder gar nicht vorhanden ist, hilft die Flucht. In engeren sozialen Verbänden können Demuts- oder Beschwichtigungsgesten aggressive Auseinandersetzungen beenden. Häufig werden dazu empfindliche Körperteile (z.B. die Kehle) dem Überlegenen präsentiert, so dass die Aggression endet oder gar nicht erst entsteht.<br>
<gallery>
Macaca_fuscata_Iwatayama.jpg|Japan-Makaken lausen sich.
Dogs_-_Ma%27dan_village_-_Nishapur_13.JPG|Der weiße Hund unterwirft sich.
Labrador_Retriever_(Yellow_2).JPG|Speichel lecken zählt ebenfalls zu den Demutsgesten. 
</gallery>
<br>
Verschiedene Strategien können die Entstehung von aggressiven Verhaltensweisen von vorneherein minimieren. Dazu zählen:
* Ausbildung einer '''Rangordnung''' (s. S. 131 - nicht verpflichtend)
* Etablierung eines '''Reviers''' (s. S. 132 - nicht verpflichtend)
* '''Migration''' (s. S. 133 - nicht verpflichtend): In einem zu dicht besiedeltes Gebiet (oder einem Gebiet, dessen Ressourcen erschöpft sind) können sich Tiere entschließen das Gebiet zu verlassen.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Aggression: Erklärungsansätze'''</span>
|Inhalt=
'''Welche Theorien gibt es, die aggressives Verhalten (beim Menschen) erklären?'''<br>
Man muss hier zwischen '''proximaten''' und '''ultimaten''' Ursachen unterscheiden.
* Wiederholung: Kläre diese beiden Begriffe im Zusammenhang mit Ethologie!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
* '''Proximate Ursachen:''' Hier werden eher physiologische Abläufe im Körper untersucht, die ein bestimmtes Verhalten auslösen. Z.B. könnten hier Hormone, bestimmte Umweltreize o.ä. eine Rolle spielen.
* '''Ultimate Ursachen:''' Diese werden eher dem Gebiet der Verhaltensökologie zugeordnet. Es geht darum zu klären, warum diese Verhaltensweisen den Erhalt der Art sichern. Letztlich also, um zu zeigen, dass eine bestimmte Verhaltensweise einen höheren Fitness-Gewinn erzielt (im Sinne evolutionärer Fitness).
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''ultimate und proximate Ursachen'''</span>
|Inhalt=
Auf die '''ultimaten Ursachen''', die z.B. mit der "Spieltheorie" untersucht werden können, werde ich hier nicht eingehen. Obwohl das ein (für mich) äußerst interessantes Feld ist. Nur eine sehr kurze Zusammenfassung anhand eines stark vereinfachten Beispiels: Mit der Spieltheorie kann man z.B. zeigen, dass es (unter bestimmten Voraussetzungen) besser ist, wenn sich in einer Gruppe ein paar Individuen aggressiv verhalten, während der Großteil eher "pazifistisch" ist. Nach diesem Modell wäre es evolutionär also gar nicht möglich, dass sich ALLE Individuen einer Gruppe friedfertig verhalten. Denn eine konkurrierende Gruppe, in der es einige aggressive Individuen gäbe, wäre im Vorteil, man sagt, sie besitzt die '''"evolutionsstabilere Strategie" (ESS)'''. Dieser Begriff ist im Skript schön erklärt und sollte verstanden worden sein. <br>
<br>
Hier soll es zum Abschluss nur um die Frage gehen, woher kommt die Aggression (bezogen auf den Menschen), also um '''proximate Ursachen'''. <br>
Heute geht man davon aus, dass zahlreiche Faktoren die Entstehung von aggressiven Verhaltensweisen beeinflussen. Das folgende Schema zeigt einige Parameter: <br>
[[Datei:Aggression_proximateKomponenten.jpg|800px]]<br>
Das Schema zeigt, dass sowohl angeborene als auch erlernte Komponenten eine Rolle spielen. Früher gab es oft Streit um die Frage, ob sich Verhaltensweisen genetisch bedingt (angeboren) oder durch Umwelterfahrungen (erlernt) entwickeln. Heute weiß man, dass nahezu alle Verhaltensweisen oft etwas von beidem haben. Wenn auch in unterschiedlicher Zusammensetzung.<br><br>
Trotzdem ein paar historische Aspekte dazu: Das (aus bekannten Gründen als überholt geltende) psychohydraulische Modell lieferte eine zeitlang Erklärungsansätze für eher angeborene Verhaltensweisen.
* Skizzieren Sie mit einer Zeichnung das psychohydraulische Modell grob!
* Gibt es Situationen, die mit diesem Modell gut erklärt werden könnten (in Bezug auf Aggression beim Menschen)?
* Warum kann dieses Modell nicht als allgemeingültig für aggressives Verhalten (beim Menschen) herangezogen werden?
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Aggression_psychohydraulischesModell.jpg|800px]]<br>
* Mit diesem Modell könnte man z.B. erklären, warum manche Menschen bei einem bestimmten Auslöser / in einer bestimmten Situation ausrasten, andere nicht. Aufgrund der '''doppelten Quantifizierung''' (dieser Begriff ist immer noch gültig, auch wenn das psychohydraulische Modell nicht mehr verwendet wird) spielt nämlich nicht nur der '''Reiz''' eine Rolle, sondern auch '''"innere Faktoren"''' und die könnten bei unterschiedlichen Menschen ja gerade unterschiedlich sein. Konkretes Beispiel: Ein Lehrer kommt in die Klasse und sagt: "Wir schreiben heute eine Ex". Manche Schüler rasten aus, zerbrechen ihren Stift und schlagen mit dem Lineal auf ihren Rucksack... Während andere sich gechillt zurücklehnen und die Sache auf sich zukommen lassen.
* Probleme mit dem psychohydraulischen Modell: Man müsste Leerlaufhandlungen beobachten können (weil das aktionsspezifische Potential sich so stark angestaut hat). Das bedeutet, wenn lange keine aggressive Handlung ausgeführt würde, müssten schon kleinste äußere Reize (im Extremfall auch ohne) eine aggressive Handlung hervorrufen. Das ist nicht zu beobachten. Aus eigener Erfahrung würde ich eher sagen: Im Gegenteil! Menschen, die wenig aggressives Verhalten zeigen, sind äußerst schwer aus der Ruhe zu bringen. (Das ist jetzt aber tatsächlich eine Meinung, keine wissenschaftlich fundierte Aussage)
* Ein weiteres Problem: Es gibt keine physiologische Entsprechung zum "aktionsspezifischen Potential". Das bedeutet: Man findet im Körper keinen Stoff o.ä., der sich anreichert, wenn keine aggressiven Handlungen ausgeführt werden.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''ultimate und proximate Ursachen'''</span>
|Inhalt=
Eine ziemlich berühmte Studie (''bobo doll study'') von einem sehr bedeutenden Verhaltensforscher bzw. Psychologen ('''A. Bandura''') hat sich mit '''Lern'''effekten beim Thema Aggression beschäftigt. Im folgenden Video (3:22 min) wird der Versuch erklärt und es enthält Original-Filmaufnahmen (omg!). Wenn ihr den einleitenden englischen Text (bis 00:26 min) nicht versteht oder übersetzen könnt, lest zunächst die WIKIPEDIA-Seite bevor ihr weiter schaut!<br>
* Link zur Wikipedia-Seite (ist echt nur kurz): [https://de.wikipedia.org/wiki/Bobo_doll_study Hier klicken]
* yt-Video: <br>
{{#ev:youtube |NjTxQy_U3ac|800}} <br>
Fazit: Dieser Versuch und seine Interpretationsmöglichkeiten sprengen den Rahmen, der im Biologie-Oberstufenlehrplan für das Thema vorgesehen ist. Vor allem, weil hier '''der Mensch''' im Vordergrund steht und die '''Psychologie''' viel speziellere Ansätze verfolgt. Ihr solltet nur sehen: Aggressives Verhalten kann offensichtlich auch erlernte Komponenten enthalten.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Kommunikation und Ritualisierung'''</span>
|Inhalt=
Wenn ihr den Hefteintrag bereits gelesen habt, ist euch sicher aufgefallen, dass einige Aspekte in der Unterrichtseinheit zum Thema '''"Kommunikation"''' noch nicht angesprochen wurden. Das soll heute nachgeholt werden. <br>
'''Einstieg:''' Gerade beim Balzverhalten zeigen einige Tiere sehr spektakuläre, teilweise auch sehr lustige Verhaltensweisen.
* Schaut als Einstieg in die Thematik das folgende Video (06:36 min., verpflichtend): [https://www.youtube.com/watch?v=wTcfDCjBqV0&list=PLu4tKDQZvTRtymYTPNpYhiDOpVlG9930B&index=1 Hier klicken]! <br>
Die Entstehung solcher Verhaltensweisen kann man mit '''"Ritualisierung"''' erklären. Bevor dieser Begriff hier definiert werden soll, vorher noch ein anderer Begriff, der in eurem Buch genannt wird: '''"Ausdrucksverhalten"'''. Als Ausdrucksverhalten bezeichnet man Verhaltensweisen (optische, wie z.B. Bewegungen / akustische, wie z.B. Lautäußerungen), die auf einen Empfänger eine '''Signalwirkung''' haben (sollen). Sie also letztlich der '''Kommunikation''' dienen.
* Wiederholung: Zeichnet das informationstheoretische Schema zur Kommunikation
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
*[[Datei:Kommunikation_Schema.jpg|600px]]
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Ausdrucksverhalten und Ritualisierung'''</span>
|Inhalt=
Der Unterschied zwischen Ausdrucksverhalten und anderen Verhaltensweisen liegt also im Signalcharakter. Noch einmal zur Verdeutlichung: <br>
''Eine Katze lauert hinter einem Blumentopf im Garten und fixiert eine junge Amsel beim Picken nach Regenwürmern. Plötzlich springt sie blitzartig in Richtung des Vogels, fährt ihre Krallen aus und versucht die Amsel zu packen.''<br>
Das ist eine Verhaltensweise. Die Katze führt diese Verhaltensweise aus, weil sie Hunger hat (bzw. um ihren Spieltrieb zu befriedigen). Mit diesem Verhalten soll keinem Empfänger etwas signalisiert werden. Sie kommuniziert nicht. <br>
''Eine Katze streunt durch das Dorf. Plötzlich trifft sie auf einen entlaufenen Hund. Sie macht einen Katzenbuckel, sträubt das Fell und faucht.''<br>
Das ist auch eine Verhaltensweise. In diesem Fall aber genauer: Ein Ausdrucksverhalten. Die Katze führt diese Verhaltensweise aus, um dem Hund etwas zu signalisieren. Durch das Abspreizen des Fells und den Katzenbuckel wirkt die Katze größer. Man könnte sagen, sie signalisiert damit ihre "Kampfkraft" (das klingt etwas schräg). Auch die Laute unterstreichen vermutlich die Bereitschaft, sich auf eine aggressive Auseinandersetzung einzulassen.<br>
Nun aber zum Begriff '''Ritualisierung''': Viele Ausdrucksverhaltsweisen sind vermutlich im Laufe der Evolution aus anderen Verhaltensweisen hervorgegangen, die ursprünglich einem anderen Zweck gedient haben. Dieser (evolutionäre, phylogenetische) Vorgang: Die Veränderung in der Bedeutung einer Verhaltensweise für das Tier, bezeichnet man als Ritualisierung.
'''Definition''': Hat sich eine Verhaltensweise im Laufe der Evolution so verändert, dass ihre ursprüngliche Bedeutung verloren geht und sie nun nur noch Signalcharakter zur Kommunikation hat, spricht man von Ritualisierung. Häufig werden dabei Verhaltenselemente stark vereinfacht oder auch übertrieben, mit auffälligen Körpermerkmalen unterstützt, rhythmisch wiederholt, teilweise aber auch ausgelassen.
* Schaut das folgende Video (01:35 min.) von balzenden Haubentauchern. Es handelt sich hier um einen '''Klassiker''' ritualisierter Verhaltensweisen. Achtet dabei auf folgende Punkte:
* Bei ca. 00:20 und 00:30 wird eine spezielle Bewegung des Kopfes ausgeführt. Wozu könnte diese ursprünglich gedient haben?
* Beschreibt was im Zeitabschnitt von ca. 00:45 - 01:00 zu sehen ist. Aus was für einer Verhaltensweise könnte dieser Teil des Balzverhaltens entstanden sein?
* Zum Video: [https://www.youtube.com/watch?v=5A6VEaY5PuA Hier klicken]
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
* 00:20 und 00:30: Es wird eine kurze Bewegung mit dem Schnabel in den hinteren Teil des Gefieders durchgeführt. Ursprünglich könnte das "Putzverhalten" bzw. Gefiederpflege gewesen sein.
* 00:45 - 00:10: Es werden mit dem Schnabel Wasserpflanzen aufgenommen und dem Partner auffällig präsentiert. Ursprünglich könnte diese Verhaltensweise mit dem Nestbau zu tun gehabt haben. (Dazu muss man wissen, dass Haubentaucher ein Nest aus Wasserpflanzen bauen)
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Beispiel-Aufgabe 1'''</span>
|Inhalt=
''Während der Balzzeit führt der Auerhahn ein sehr auffälliges Schauspiel auf: Mit aufgefächerten, steil aufgerichteten Schwanzfedern und hoch gerecktem Kopf betritt er eine Lichtung im Wald. Dort kann man des Balzgesang hören. Dieser besteht aus rhythmischem Klappern mit dem Schnabel, dem Trillern und verschiedenen weiteren Elementen. Insgesamt dauert eine Einheit etwa sechs Sekunden. Interpretieren Sie dieses Verhalten aus ethologischer Sicht!''
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Wie immer bei dieser Aufgabenstellung solltet ihr die folgenden drei Punkte abarbeiten: <br>
'''Identifikation des Verhaltens + Fachbegriff:''' Es handelt sich beim Balzverhalten des Auerhuhns um ein '''ritualisiertes Verhalten''': <br>
'''Definition:''' Ein Verhalten, das ursprünglich einem anderen Bedeutungskreis zugeordnet war, wird nun als Signal zur Kommunikation eingesetzt. Häufig werden dabei Verhaltenselemente stark vereinfacht oder auch übertrieben, mit auffälligen Körpermerkmalen unterstützt, rhythmisch wiederholt, teilweise aber auch ausgelassen.<br>
'''Zuordnung von Textstellen des konkreten Beispiels zu den allgemeinen Begriffen der Definition:'''  Ursprünglich könnte das Auffächern und Aufrichten der Schwanzfedern aus dem Bereich des Aggressionsverhaltens stammen. Die Vergrößerung der Körperumrisse ist dort typisch. Nun ist diese Verhalten einzig als Signal zur Kommunikation mit Weibchen umfunktioniert. Es signalisiert Paarungsbereitschaft. Typisch für ritualisiertes Verhalten ist hier das rhythmische Klappern mit dem Schnabel.
|Lösung|Lösung verbergen}}
{{Box-spezial
|Titel=<span style="color:#00F">'''Beispiel-Aufgabe 2'''</span>
|Inhalt=
Ein weiteres Beispiel: In eurem Buch ist anhand verschiedener Fasan-Arten die Entwicklung von einem einfachen Balzverhalten hin zu einem komplexen Balzverhalten im Sinne einer Ritualisierung schön beschrieben.
* Lest zunächst im blauen Kasten Zettelkasten "Ritualisierung" auf S. 124 '''nur den ersten Absatz'''.
* Eine Aufgabe zu diesem Textabschnitt könnte lauten: Interpretieren Sie diese Verhaltensweisen im Sinne einer Ritualisierung!
* Die Lösung für eine derartige Aufgabe wäre dann der zweite Absatz des Zettelkastens. Lest diesen jetzt!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Ritualisierung beim Menschen'''</span>
|Inhalt=
Auch der Mensch zeigt etliche ritualisierte Verhaltensweisen bei der Partnerfindung. Sucht konkrete Beispiele!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
z.B.: Manche Jungs lassen vor der Disko den Motor ihres Autos aufheulen. "Vollgas geben" macht auf einem Parkplatz keinen Sinn. Ein ursprünglich aus einem anderen Funktionskreis stammendes Verhalten hat jetzt nur noch Signalcharakter zur Kommunikation im Sinne von "Ich-bin-bereit-zur-Paarung".
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Ritualisierung beim Menschen'''</span>
|Inhalt=
Ein letzter Punkt: Manche ritualisierten Verhaltensweisen dienen der Festigung sozialer Bindungen. Bsp.: "Küssen". Einige Forscher glauben, diese Verhaltensweise diente ursprünglich dem Übertragen von Nahrung. Tatsächlich kommt das sehr oft bei Vögeln vor, wenn Elterntiere ihre Jungen füttern. Beim Tukan auch zwischen den erwachsenen Tieren selbst. Auch bei einem noch sehr ursprünglich lebenden Naturvolk auf Neuguinea kaut die Mutter harte Nahrung vor, bevor sie diese von Mund zu Mund ihrem Kind übergibt. Schimpansen zeigen ein dem "menschlichen Küssen" ganz ähnliches Verhalten. Heute wird beim Küssen (in der Regel) keine Nahrung mehr übergeben. Es ist lediglich ein Signal im Sinne der Kommunikation für die Information "Ich mag Dich".<br>
"Streicheln" könnte ebenso ein ritualisiertes Verhalten zur Festigung sozialer Bindung sein. Auch ohne sexuelle Komponente: Z.B. wenn eine Person traurig ist, kann durch das "in-den-Arm-nehmen" oder "über-den-Kopf-streichen" Trost gespendet werden. Evtl. könnte dieses Verhalten vom "Sich-gegenseitig-Parasiten-aus-dem-Fell-picken" abstammen. Tatsächlich lausen sich bestimmte Affenarten auch dann gegenseitig, obwohl überhaupt keine Parasiten vorhanden sind. Auch hier könnte das Signal im Sinne der Kommunikation bedeuten "Ich mag Dich", "Ich stehe Dir bei" usw.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Leben in der Gruppe'''</span>
|Inhalt=
Viele Tiere leben '''solitär''' (alleine) und kommen nur zur Paarung mit einem Partner zusammen. Andere dagegen bilden '''Gruppen'''. In der letzten Einheit ging es u. a. um die verschiedenen Formen des Zusammenhalts in solchen Gruppen. Manchmal ist der eher locker, manchmal aber auch sehr eng. In dieser Einheit geht es um eher theoretische Modelle zur '''Gruppengröße'''.
* Lest die Seiten 116 - 119!
* Interpretiert die Grafiken im Buch S. 116 (linke Randspalte, drei Grafiken)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafik:''' Die Grafiken zeigen sowohl die Häufigkeiten von Störungen und die Häufigkeiten von Angriffen durch Räuber als auch die Menge gefressener Jungtiere bei Zwergmangusten, einmal in Gruppen mit weniger als 5 Tieren und einmal in Gruppen mit mehr als 5 Tieren. <br>
'''Beschreibung des Verlaufs:'''Störungen treten in beiden Gruppengrößen gleich häufig auf, Angriffe erfolgen auf Gruppen mit mehr als 5 Tieren deutlich seltener. In großen Gruppen werden keine Jungtiere von Räubern gefressen.<br>
'''Erklärung des Zusammenhangs:''' ''Im Wesentlichen kann man hier den Text im Schulbuch zusammenfassen.'' In großen Gruppen gibt es mehr "Wächter", die die anderen in der Gruppe vor einem Angreifer warnen können. Damit sind Räuber quasi nicht mehr erfolgreich.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=
|Inhalt=
* Interpretiert die Abbildung 2 im Buch auf der S. 118 (Haussperling)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafik:''' Die Grafik zeigt die Rate des schnellen Umblickens in Abhängigkeit von der Schwarmgröße bei Haussperlingen. <br>
'''Beschreibung des Verlaufs:''' Je größer der Schwarm, desto seltener blicken die Vögel um (Das klickt irgendwie etwas schräg...). Die Abnahme ist nicht linear, sondern logarithmisch. Bei sehr kleinen Gruppen führt die Vergrößerung der Gruppe zu einem starken Abfall der fürs Umblicken investierten Zeit, bei sehr großen Gruppen kaum noch. ''Oder anders herum:'' Wenn die Gruppen sehr klein werden, steigt die Zeit fürs Umblicken sehr rasch an.<br>
'''Erklärung des Zusammenhangs:''' Umblicken sorgt für die Sicherheit der ganzen Gruppe. Damit die Sicherheit permanent gewährleistet ist, muss auch ständig ein Tier umblicken. Je mehr Tiere in der Gruppe vorhanden sind, umso stärker verteilt sich diese Aufgabe und die Tiere können anderen Verhaltensweisen nachgehen.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=
|Inhalt=
* Interpretiert die Abbildung 1 im Buch auf der S. 119 (Schwalbenneester)! Am besten schriftlich oder laut mündlich. Bitte nicht vorher auf "Anzeigen" klicken.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafik:''' Die Grafik zeigt die relative Häufigkeit von Wanzen in Schwalbennestern in Abhängigkeit von der Größe der Brutkolonie. <br>
'''Beschreibung des Verlaufs:''' Je größer die Kolonie, desto mehr Wanzen befinden sich in den Schwalbennestern.<br>
'''Erklärung des Zusammenhangs:''' ''Im Text nicht sehr tiefgründig erklärt.'' Vermutlich könnte man hier ähnlich argumentieren wie bei Pflanzenschädlingen in einer Monokultur. Zum einen ist die Wahrscheinlichkeit bei großen Kolonien einfach größer, dass heimkehrende Schwalben eine Wanze in die Kolonie einbringen (einfach weil die Kolonie von mehr Tieren angeflogen wird). Und wenn die Wanzen erst einmal da sind, bietet eine große Kolonie selbstverständlich hervorragende Vermehrungs-Bedingungen.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=
|Inhalt=
* Beschreiben Sie die folgenden Abbildungen mit Daten zu einer in Gruppen lebenden Affen-Art (Keine Begründung für den Verlauf nötig)<br>
[[Datei:Gruppe_VorNachteile_aggr_Vert.jpg|600px]]
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafiken:''' Die Grafiken zeigen sowohl die Häufigkeit aggressiver Auseinandersetzungen als auch die erfolgreichen Vertreibungen anderern Gruppen bei einer Affenart in Abhängigkeit von der Gruppengröße.<br>
'''Beschreibung des Verlaufs:''' Je größer die Gruppe, desto häufiger erfolgen aggressive Auseinandersetzungen, desto häufiger werden aber auch andere Gruppen erfolgreich vertrieben.<br>
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''1. Zusammenfassung: Leben in der Gruppe'''</span>
|Inhalt=
Fast man alle bisher betrachteten Grafik zusammen. Wie könnte man dann eine einfache Faustregel für das Leben in der Gruppe formulieren.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Das Leben in der Gruppe hat sowohl Vor- als auch Nachteile.<br>
<br>
Optional: Schaut ein Video (0:59) über Zwergmangusten: [https://www.youtube.com/watch?v=PWgZ1ylYk3g Hier klicken]
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span>
|Inhalt=
Das Leben in der Gruppe hat also Vor- und Nachteile.
* Zeichnet eine Grafik in der auf der y-Achse die Kosten (ein Nachteil) dargestellt sind und zwar in Form von Nahrungskonkurrenz. Das Ganze in Abhängigkeit von der Gruppengröße. Stellt folgende Überlegung an: Betrachtet ein Tier, das Früchte von Bäumen frisst. Wie schwierig ist für eine kleine Gruppe (wie groß ist ihr Nachteil) sich mit Nahrung zu versorgen? Wie schwierig ist es für große Gruppen?
* Zeichnet dann in die selbe Grafik eine zweite Kurve ein. Die soll zu einer zweiten y-Achse gehören, die ihr am rechten Rand der Grafik einfügt (das sieht man nicht so oft, ist dennoch üblich). Die zweite y-Achse soll den Nutzen (auch "benefit" oder Vorteil) darstellen und zwar gemessen an dem Druck der von Räubern auf eine Gruppe ausgeübt. Mit Druck ist hier gemeint: Wie schlimm ist es für die Gruppe, wenn ein Räuber in der Nähe ist? Wie schlimm ist es für die Gruppe, wenn ein Mitglied vom Räuber gefressen wird? Stellt folgende Überlegungen an: Betrachtet ein Tier, dass kaum Verteidigungsstrategien (außer vielleicht "Wegrennen") besitzt. Wie hoch ist der Druck von Räubern auf eine kleine Gruppe, wie hoch auf eine große?
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Gruppe_Opt_ML1.jpg|600px]]
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span>
|Inhalt=
* Zeichnet in die selbe Grafik eine weitere Kurve ein, die zur zweiten y-Achse (Räuberdruck) gehören soll! Diesmal soll die Anzahl der Räuber in dem Gebiet, in dem die untersuchten Tiere leben sehr viel kleiner sein.
* Überlegt, wie man aus dieser Grafik ablesen kann, welche Gruppengröße für die betrachteten Tiere ideal wäre!
* Unterscheidet sich die Gruppengröße in Abhängigkeit von der Anzahl an Raubtieren im Gebiet?
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Gruppe_Opt_ML2.jpg|600px]]<br>
Die optimale Gruppengröße liegt dort, wo sich die Kurven von Nutzen und Kosten schneiden. Kleinere Gruppen hätten einen kleineren Nutzen, größere Gruppen höhere Kosten. Dieses Prinzip, dass es eine mittlere Gruppengröße gibt, bei der der Nutzen relativ hoch und die Kosten relativ niedrig sind, nennt man '''Optimalitäts-Modell.'''<br>
Wenn sich wenige Räuber im Gebiet aufhalten, ist auch der Druck nicht so groß. Auch wenn es sich bei der Grafik nur um theoretische Überlegungen handelt, findet man dazu passende Phänomene in der Natur: In Gebieten mit mehr Räubern sind die Gruppen von Beutetieren tatsächlich im Durchschnitt größer als in Gebieten mit wenigen Räubern.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span>
|Inhalt=
Das Optimalitäts-Prinzip kann auch auf andere ethologische Sachverhalten angewendete werden. Zum Beispiel auf die Reviergröße. Zum Thema "Revier" möchte ich nicht viel sagen. Optional (freiwillig) könnt ihr die S. 132 lesen. Für diese Einheit genügt es, wenn ihr wisst, dass "ein Revier" ein Gebiet ist, das von einem Tier oder einer Gruppe gegen Eindringlinge verteidigt wird.
* Zeichnet eine Grafik die auf der y-Achse sowohl die Kosten, als auch die Nutzen eines Reviers in Abhängigkeit von seiner Größe zeigt! Stellt euch dazu folgende Fragen:
** Betrachtet ein hypothetisches Lebewesen, dass Pflanzen als Nahrung anbaut, aber auch Tiere frisst. Das Tier soll mit seinem Partner und zwei Kindern ein Revier besetzen und gegen Eindringlinge verteidigen. Wie ändert sich der Nutzen, wenn das Gebiet, das die Gruppe besetzen kann, vergrößert wird?
** Wenn das Revier sehr groß ist und die Gruppe völlig ausreichend ernährt, wie ändert sich der Nutzen, wenn es noch größer wird?
** Wie ändern sich die Kosten, wenn das Gebiet immer größer wird?
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Revier_Opt_ML1.jpg|300px]]<br>
* Die Kosten nehmen (im Idealfall) linear zu. Die Kosten eines Reviers bestehen hauptsächlich darin, die Grenzen zu verteidigen, also z.B. Zeit darauf zu verwenden, an den Grenzen entlang zu patrouillieren. Nimmt man z.B. ein kreisrundes Revier an, nehmen die Grenzen (der Umfang) linear mit dem Faktor 2*pi*r zu.
* Der Nutzen nimmt zunächst mit steigender Fläche zu, weil mehr angebaut werden kann etc. Allerdings wird der Anstieg bei sehr großen Flächen immer weniger relevant. Stellt euch vor, der Gruppe gehört die halbe Welt. Nahrung ist im Überfluss vorhanden. Versteck- und Schlafmöglichkeiten gibt es unzählige. Wenn man der Gruppe nun die ganze Welt zur Verfügung stellen würde, hätte das quasi keinen Mehrwert.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Das Optimalitäts-Prinzip'''</span>
|Inhalt=
* Wo findet man in der gezeichneten Grafik die optimale Reviergröße?
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
[[Datei:Revier_Opt_ML2.jpg|300px]]<br>
Dort wo der Abstand zwischen Kosten und Nutzen am größten ist. (Nur in dem hier gezeichneten Fall. Wurde die Grafik so gezeichnet, dass die Kosten-Linie immer über der Nutzen-Linie liegt, dann ist die optimale Revier-Größe dort, wo der Abstand am kleinsten ist)
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Normalerweise sollten sich bei Tieren Verhaltensweisen evolutionär durchsetzen, die für sie einen Vorteil bedeuten. Manche Tiere tun jedoch Dinge, die auf den ersten Blick für sie nur einen Nachteil bedeuten. Zum Beispiel gibt es bei den Florida-Buschhähern ([https://commons.wikimedia.org/wiki/File:Florida-Buschhäher_(Aphelocoma_coerulescens)_lat._B._Walker.jpg Bild]) das Phänomen des "Helfens". In der Regel gibt es deutlich mehr Männchen als Weibchen und während der Brutsaison finden einige Männchen keinen Partner. Etliche von diesen Männchen engagieren sich jedoch als "Helfer" und schaffen für die Jungtiere eines anderen Paares Nahrung herbei. Die folgende Grafik zeigt Ergebnisse einer Studie zu dieser Thematik. In der Studie wurde brütenden Paaren ihr Helfer weggenommen (''Wie auch immer das gemacht wurde...omg!''), das ist die Experimentalgruppe. Verglichen wurde die durchschnittliche Anzahl an Nachkommen dieser Gruppe mit dem Durchschnitt an Nachkommen von Gruppen, die ihre Helfer behalten haben (Kontrollgruppe).
* Interpretieren Sie die Grafik! <br>
[[Datei:Altruismu_Helfer.jpg|600px]]<br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Die Grafik zeigt die durchschnittliche Anzahl an Nachkommen bei zwei Gruppen von Florida-Buschhähern in den Jahren 1987 und 1988 (und insgesamt). Verglichen wird die Gruppe der Vögel, die ihren Helfer verloren haben mit der Gruppe, die ihren Helfer behalten haben. Die Anzahl der Nachkommen ist in der Gruppe mit Helfer deutlich höher. Der Helfer hat für das brütende Paar also tatsächlich einen großen Vorteil. (Aber für sich selbst?)
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Lest die S. 120 und fasst zusammen, wie erklärt wird, dass die Verhaltensweise "Helfen" sich evolutionär durchsetzt, obwohl sie doch scheinbar zunächst nur Kosten für das helfende Tier verursacht!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Kurz zusammengefasst spielt hier der Begriff "indirekte Fitness" die entscheidende Rolle. Vereinfacht ausgedrückt: Die Helfer sind oft mit dem brütenden Paar verwandt. Das bedeutet sie haben statistisch gesehen einen gewissen Teil der Gene gemeinsam. Der Helfer sorgt mit seinem "Helfen" also dafür, dass ein Teil seiner Gene (also auch die, die das "Helfen" verursachen) in die nächste Generation gelangt auch ohne, dass er sich selbst fortpflanzt. <br>
Außerdem werden Helfer im nächsten Jahr von Weibchen bevorzugt, was den Fortpflanzungserfolg der Helfer stark erhöht.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Das bedeutet, dass "Helfen" mehr Sinn macht, bei Personen mit denen man näher verwandt ist.
* Interpretiert (diesmal ausführlich) dazu die folgende Grafik, die Daten von Affen enthält! <br>
[[Datei:Gruppe_Hamilton.jpg|600px]]<br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafiken:''' Die Grafik zeigt die Häufigkeit gegenseitigen Lausens in Abhängigkeit vom Verwandtschaftsgrad.<br>
'''Beschreibung des Verlaufs:''' Je höher der Verwandtschaftsgrad, desto häufiger wird gelaust.<br>
'''Erklärung des Zusammenhangs:''' Man kann hier mit indirekter Fitness argumentieren: Derjenige der laust, hat zunächst Kosten (er muss Zeit aufwenden, die er nicht für Nahrungssuche, Partnersuche etc. verwenden kann). Der gelauste Affe hat Vorteile (Parasiten werden entfernt). Sind die sich lausenden Tiere jedoch verwandt, trägt die Verhaltensweise dazu bei, dass die Gene des lausenden Tiers, die sich aufgrund der Verwandtschaft teilweise auch im gelausten Tier befinden, größere Chancen haben, in die nächste Generation zu gelangen. <br>
Die Hamilton-Ungleichung kann man hier noch anführen. Sie ist allerdings nicht generell anwendbar, daher gehe ich nicht weiter darauf ein.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Soweit so gut. Über die indirekte Fitness kann man also die Verhaltensweise von Helfern erklären. Leider funktioniert das nur bei '''primären Helfern'''. Das sind genau die, die eben verwandt mit dem brütenden Paar sind. Bei Graufischern ([https://commons.wikimedia.org/wiki/File:Ceryle_rudis_(male).jpg Bild]) tauchen allerdings '''sekundäre Helfer''' auf, diese sind nicht mit dem brütenden Paar verwandt.
* Beschreiben Sie dazu die folgende Grafik (keine Erklärung)! <br>
[[Datei:Altruismu_sekHelfer.jpg|600px]]<br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Beschreibung der Grafiken:''' Die Grafik zeigt die für Jungtiere herbeigeschaffte Menge Futter (in Kilokalorien) von den Eltern und primären bzw. sekundären Helfern.<br>
'''Beschreibung des Verlaufs:''' Die Eltern schaffen sehr viel Nahrung herbei (das Weibchen etwas weniger, weil es auch noch brütet), primäre Helfer fast so viel wie der eigene Vater, sekundäre Helfer tragen nur geringfügig zur Ernährung der Jungtiere bei. <br>
Salopp könnte man auch sagen: ''Sekundäre Helfer reißen sich jetzt nicht gerade ein Bein aus...''
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
* Beschreiben Sie (diesmal nur sehr kurz) die folgenden Grafiken, die ebenfalls anhand von Graufischer-Daten gewonnen wurden (keine Erklärung)! <br>
[[Datei:Altruismu_sekHelfer2.jpg|600px]]<br>
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
Auch sekundäre Helfer haben im 2. Jahr einen Fitnessgewinn.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Lesen Sie im Buch S. 121 die ersten vier Absätze (Nicht zu lesen "Eusozialität")
* Hier wird das "Helfen" von nicht-verwandten Tieren mit '''reziprokem Altruismus''' erklärt. Füllen Sie diesen Fachbegriff etwas mit Leben!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
'''Reziproker Altruismus''' könnte stark vereinfacht mit: "Hilfst Du mir, helf ich Dir!" veranschaulicht werden. Die Vampirfledermäuse im Text helfen anderen häufiger, wenn ihnen von den zu helfenden bereits einmal geholfen wurde. Tatsächlich zeigen auch psychologische Studien beim Menschen einen ähnlichen Effekt: Berufsgruppen, die anderen helfen (Feuerwehrmänner, Krankenschwester etc.) genießen in der Regel einen sehr guten Ruf. Allerdings kann man beim Menschen hohes Ansehen nicht zwangsläufig mit höherem Fortpflanzungserfolg gleichsetzen.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Uneigennütziges Verhalten: Altruismus?'''</span>
|Inhalt=
Optional: Schaut ein Video (2:43) über den Florida Buschhäher: [https://www.youtube.com/watch?v=QP6KM6qe03E Hier klicken]
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
== Sozialverhalten ==
{{Box-spezial
|Titel=<span style="color:#00F">'''Überblick'''</span>
|Inhalt=
Das letzte im Biologie-Lehrplan der 12. Jahrgangsstufe vorgesehene Kapitel betrachtet Verhaltensweisen, die in sozialen Gruppen eine Rolle spielen.
* Dazu ist es zunächst wichtig verschiedene '''Formen des Zusammenlebens''' zu unterscheiden. (Buch, S. 117)
* Gruppen, die sich bilden, können unterschiedlich groß sein. Woran liegt das? Welche Faktoren beeinflussen die '''Größe einer Gruppe'''? (Buch, S. 116 – 119)
* Um das Funktionieren einer Gruppe zu gewährleisten, müssen sich die Mitglieder verständigen können: Es ist eine '''Kommunikation''' nötig. (Grundlagen: Buch, S. 124; Vertiefung: S. 125 – 127)
* Wo mehrere Individuen zusammenkommen gibt es auch Streit. Welche Formen aggressiven Verhaltens unterscheidet man und wie kann '''Aggression''' vermieden werden? (Buch S. 128 – 131, 136 – 139)
* Es gibt Tiere, die ihr Leben lang sehr isoliert leben und kaum Kontakt zu Artgenossen haben. Spätestens wenn sie sich '''fortpflanzen''' wollen, brauchen sie aber einen Partner. Welche Strategien gibt es, einen zu finden? (Buch S. 140 – 143, 146 -149)
* Einige Verhaltensstrategien in Gruppen scheinen auf den ersten Blick '''altruistisch'''. Das bedeutet, das handelnde Tier hat eher einen Nachteil, während ein anderes Tier davon profitiert. Das würde aber dem Evolutionsgedanken widersprechen – stark vereinfacht: Wenn ein Tier eine Verhaltensweise zeigt, muss es dafür Energie aufwenden. Tiere, die diese Verhaltensweise nicht zeigen, verbrauchen weniger. Es sollte sich das Tier stärker vermehren können, das weniger Energie verbraucht. Die anderen sollten nach und nach aussterben. Wie kann es dann sein, dass sich trotzdem scheinbar altruistische Verhaltensweisen entwickelt haben und bestehen bleiben. (Buch, S. 120 – 123)
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Formen sozialer Verbände'''</span>
|Inhalt=
* Lest den grauen Kasten auf S. 117 (Formen sozialer Verbände) und verinnerlicht die Begriffe!
* Schließt das Buch!
* Ordnet den folgenden Verbänden den richtigen Fachbegriff zu!
** 1. Kattas (''Lemur catta'') leben in Gruppen zu ca. 13 – 15 Tieren. Die Gruppen werden von einem zentralen Weibchen angeführt, dass z.B. die Bewegungsrichtung der Gruppe bestimmt. Aufgrund einer ausgebildeten Rangordnung ist klar festgelegt, in welcher Reihenfolge die Tiere dem anführenden Weibchen folgen dürfen.
** 2. Auf dem Blütenstand einer Schafgarbe befinden sich verschiedene Käfer, zwei Fliegen und ein Schmetterling um den Nektar der Pflanze zu trinken.
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
* Kattas bilden '''individualisierte, geschlossene''' Verbände. (Warum? Individualisiert bedeutet, die Tiere kennen sich untereinander persönlich. Das ist hier zwingend erforderlich, sonst könnten die Tiere die Rangordnung nicht einhalten.
* Die verschiedenen Tiere auf einer Blüte bezeichnet man als '''Aggregation.''' Es gibt keine Bindung oder Beziehung zwischen den Tieren. Sie befinden sich nur aufgrund eines äußeren Umweltfaktors (dem Nektar) zusammen an diesem Ort.
|Lösung|Lösung verbergen}}
<br>
{{Box-spezial
|Titel=<span style="color:#00F">'''Signale'''</span>
|Inhalt=
* Betrachtet zunächst nur die Abb. 1. Auf der S. 124, lest nicht den Text!
* Versucht folgende Aufgabe zu lösen: Ein frisch geschlüpftes, einsames Küken piept laut und wedelt aufgeregt mit den Flügeln. Die Henne, die das Ei gelegt hat, aus dem das Küken geschlüpft ist, kommt herbei gerannt. Spielt man die Rufe des Kükens von einem Tonband ab, kommt die Henne ebenfalls herbeigerannt. Stülpt man über das Küken eine Glasglocke, so dass die Henne das Küken zwar sehen kann, die Rufe jedoch nicht hört, interessiert sich die Henne nicht für das Küken. Interpretieren Sie dieses Verhalten aus kommunikationstheoretischer Sicht!
* Lest nun die Seiten 124 – 125 ohne den blauen Kasten (Ritualisierung).
* Schließt das Buch!
* Legt eine Tabelle an, die ihr mit folgenden Aspekten füllt: Welche Arten von Signalen gibt? Was sind die Vor- und Nachteile der jeweiligen Signalarten? Nenne ein konkretes Beispiel für jede Signalart!
|Farbe= #00F
|Rahmen= 0         
|Rahmenfarbe= #CFF
|Hintergrund= #CFF
}}
<br>
{{Lösung versteckt|
* Das Küken ist der '''Sender'''. Die '''Information''' könnte mit "ich bin allein, hilflos und brauche Schutz" beschrieben werden. Diese Information wird '''codiert''' und in Form von Lauten und auch durch das Wedeln mit den Flügel geäußert. Das sind '''Signale''' (akustische und optische). Der '''Empfänger''' ist die Henne, die diese Signale wieder in die ursprüngliche Information '''decodiert'''. Die Henne kann offensichtlich nur akustische Signale decodieren. Dies zeigt der Versuch mit dem Tonband. Die optischen Signale können von der Henne nicht verarbeitet werden (das zeigt der Versuch mit der Glasglocke).
* Eine Übersicht über die verschiedenen Signalarten mit Beispielen und deren Vor- bzw. Nachteile findet ihr im Skript.
|Lösung|Lösung verbergen}}
<br>
====<span style="color:#00A">'''Arbeitsaufträge vom 17.03., zu bearbeiten bis 20.03.'''</span>====
====<span style="color:#00A">'''Arbeitsaufträge vom 17.03., zu bearbeiten bis 20.03.'''</span>====



Aktuelle Version vom 13. März 2024, 16:44 Uhr

Arbeitsaufträge vom 17.03., zu bearbeiten bis 20.03.

  • Macht eine Pause – holt euch einen Kaffee (o.ä.)!


Lösungsvorschläge

Für die Arbeitsaufträge vom 17.03.

Vorlage:Versteckt



Corona-Sonderregeln Q11

Die folgenden Regeln bezogen sich auf die Situation der Q11 im Schuljahr 2020/2021.


Bildung der Halbjahresleistung (HJL) für den Ausbildungsabschnitt 11/1

Cor ab1503 HJL111.jpg


Regelungen für Sport

Cor ab1503 Sport V2.jpg
Achtung, Termin geändert: Die Abgabe der Erklärung, welche großen praktischen Leistungsnachweise zählen sollen ist erst bis 18.05. erforderlich!
Hier noch einmal ein Beispiel, welches anhand der verschiedenen Leistungsnachweise im gesamten Schuljahr verdeutlichen soll, welche Wahl getroffen werden muss.

Cor ab1503 Sport BspSJ.jpg

Hinweis zur Logik, die hinter diesem Verfahren stecken soll: In allen anderen Fächern wird nur eine Schulaufgabe (großer Leistungsnachweis) geschrieben. Entweder sie wurde bereits vor dem 15. März geschrieben oder sie wird erst noch geschrieben. In Sport liegt ein Sonderfall vor: Anstatt Schulaufgaben werden manche prakt. Leistungsnachweise als große Leistungsnachweise gewertet. Nachdem ab April die Sportart wechselt und dann auch wieder prakt. Leistungsnachweise absolviert werden, würden in Sport quasi "zwei Schulaufgaben" im ganzen Semester 11/1 vorliegen. Damit das nicht eintritt, muss entschieden werden, welche "Schulaufgabe", bzw. die prakt. Leistungsnachweise aus welchem Handlungsfeld, gewertet werden sollen. Die kleinen Leistungsnachweise werden immer alle gewertet. Damit wird die Notensituation in Sport den anderen Fächern angeglichen.
Ergänzung zur Notenbildung in 11/2: Für die Halbjahresleistung in 11/2 werden die selben Noten herangezogen, aus denen auch schon die Halbjahresleistung für 11/1 errechnet wurde. Ein häufiges Missverständnis ist, dass manche Noten zu 11/1 und manche zu 11/2 zählen würden. Dem ist nicht so. Es gibt keine 11/2-Noten! Alle Leistungsnachweise zählen zu 11/1!


Regelungen für die Seminare

Cor ab1503 Seminare.jpg


Bildung der Halbjahresleistung (HJL) für den Ausbildungsabschnitt 11/2

Cor ab1503 HJL112.jpg


Zeitplan

Cor ab1503 Zeitplan V2.jpg
Achtung, Termin geändert: Die Abgabe der Erklärung, welche großen praktischen Leistungsnachweise zählen sollen ist bis 18.05. erforderlich gewesen!


Chemie: chemische Reaktionsgleichungen aufstellen

Nr. 1: Ammoniak reagiert mit Sauerstoff zu Stickstoffmonooxid und Wasser.

4 NH3 + 5 O2 --> 4 NO + 6 H2O


oder Schritt für Schritt:

Ammoniak + Sauerstoff --> Stickstoffmonooxid + Wasser

  • Ammoniak (Trivialname, muss man auswendig wissen): NH3
  • Sauerstoff (Element und steht im HOFBrINCl): O2
  • Stickstoffmonooxid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): NO
  • Wasser (Trivialname, muss man auswendig wissen): H2O
  • NH3 + O2 --> NO + H2O

4 NH3 + 5 O2 --> 4 NO + 6 H2O

Beschreibe den Aufbau des Stoffs Ammoniak unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um einen molekularen Stoff. Die einzelnen Moleküle bestehen aus einem Stickstoff- und drei Wasserstoff-Atomen, die fest miteinander verbunden sind. Die einzelnen Moleküle sind frei gegeneinander beweglich.



Nr. 2: Benzol (C6H6) verbrennt (reagiert mit Sauerstoff) zu Kohlenstoffdioxid und Wasser

2 C6H6 + 15 O2 --> 12 CO2 + 6 H2O


oder Schritt für Schritt:

Benzol + Sauerstoff --> Kohlenstoffdioxid + Wasser

  • Benzol (Trivialname, müsst ihr aktuell noch nocht wissen, daher ist chem. Formel angegeben): C6H6
  • Sauerstoff (Element und steht im HOFBrINCl): O2
  • Kohlenstoffdioxid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): CO2
  • Wasser (Trivialname, muss man auswendig wissen): H2O
  • C6H6 + O2 --> CO2 + H2O

2 C6H6 + 15 O2 --> 12 CO2 + 6 H2O

Beschreibe den Aufbau des Stoffs Kohlenstoffdioxid unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um einen molekularen Stoff. Die einzelnen Moleküle bestehen aus einem Kohlenstoff- und zwei Sauerstoff-Atomen, die fest miteinander verbunden sind. Die einzelnen Moleküle sind frei gegeneinander beweglich.


Nr. 3: Phosphortribromid und Wasser reagieren zu Diphosphortrioxid und Wasserstoffbromid.

2 PBr3 + 3 H2O --> P2O3 + 6 HBr


oder Schritt für Schritt:

Phosphortribromid + Wasser --> Diphosphortrioxid + Wasserstoffbromid

  • Phosphortribromid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): PBr3
  • Wasser (Tivialname, muss man auswendig wissen): H2O
  • Diphosphortrioxid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): P2O3
  • Wasserstoffbromid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): HBr
  • PBr3 + H2O --> P2O3 + HBr

2 PBr3 + 3 H2O --> P2O3 + 6 HBr

Beschreibe den Aufbau des Stoffs Disphosphortrioxid unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um einen molekularen Stoff. Die einzelnen Moleküle bestehen aus zwei Phosphor- und drei Sauerstoff-Atomen, die fest miteinander verbunden sind. Die einzelnen Moleküle sind frei gegeneinander beweglich.


Nr. a) Aluminium und Chlor reagieren zu Aluminiumchlorid

2 Al + 3 Cl2 --> 2 Al2O3


oder Schritt für Schritt:

Aluminium + Chlor --> Aluminiumchlorid

  • Aluminium (Element, nicht Bestandteil von HONClBrIF): Al
  • Chlor (Element, Bestandteil von HONClBrIF): Cl2
  • Aluminiumchlorid (Ionenverbindung oder Salz, Namensgebung s. Buch, S. 152-153):
    • Aluminium steht in der 3. Hauptgruppe --> bildet in Salzen immer 3fach positiv geladenen Kationen: Al3+
    • Chlor steht in der 7. Hauptgruppe --> bildet in Salzen immer 1fach negativ geladene Anionen: Cl-
    • Damit aus diesen beiden Ionen ein insgesamt ungeladenes Salz entstheht, müssen pro Al3+-Ion drei Cl--Ionen vorhanden sein. Daraus ergibt sich die Formel für das Salz: AlCl3
  • Al + Cl2 --> AlCl3

2 Al + 3 Cl2 --> 2 AlCl3

Beschreibe den Aufbau des Stoffs Aluminiumchlorid unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um ein Salz (eine Ionenverbindung). Es besteht aus 3fach positiv geladenen Aluminium-Kationen und 1fach negativ geladenen Chlorid-Anionen. Bei der chem. Formel handelt es sich um eine Verhältnisformel: Es liegen große Kristalle vor, die aus sehr vielen Ionen bestehen, die in einem starren Gitter im angegebenen Verhältnis vorliegen und sich alle gegenseitig anziehen.


Nr. d) Zink(II)-oxid reagiert mit Kohlenstoff zu Zink und Kohlenstoffdioxid

2 ZnO + C --> 2 Zn + CO2


oder Schritt für Schritt:

Zink(II)-oxid + Kohlenstoff --> Zink + Kohlenstoffdioxid

  • Zink(II)-oxid (Ionenverbindung oder Salz, Namensgebung s. Buch, S. 152-153):
    • Zink steht in einer Nebengruppe. Welche Ionen Zink bildet ist daher nicht ganz klar. Die römische Zahl in der runden Klammer gibt aber die Ladung des Zink-Kations im Salz an: 2fach positiv --> Zn2+
    • Sauerstoff steht in der 6. Hauptgruppe --> bildet in Salzen immer 2fach negativ geladene Anionen: O2-
    • Damit aus diesen beiden Ionen ein insgesamt ungeladenes Salz entstheht, muss pro Zn2+-Ion ein O2--Ionen vorhanden sein. Daraus ergibt sich die Formel für das Salz: ZnO
  • Kohlenstoff (Element, kein Bestandteil von HONClBrIF): C
  • Zink (Element, kein Bestandteil von HONClBrIF): Zn
  • Kohlenstoffdioxid (Molekularer Stoff, da aus zwei Nichtmetallen zusammengesetzt, Namensgebung s. Buch, S. 102): CO2
  • ZnO + C --> Zn + CO2

2 ZnO + C --> 2 Zn + CO2

Beschreibe den Aufbau des Stoffs Zinkoxid unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um ein Salz (eine Ionenverbindung). Es besteht aus 2fach positiv geladenen Zink-Kationen und 2fach negativ geladenen Oxid-Anionen. Bei der chem. Formel handelt es sich um eine Verhältnisformel: Es liegen große Kristalle vor, die aus sehr vielen Ionen bestehen, die in einem starren Gitter im angegebenen Verhältnis vorliegen und sich alle gegenseitig anziehen.


Nr. f) Aluminiumhydroxid reagiert zu Aluminiumoxid und Wasser

2 Al(OH)3 --> Al2O3 + 3 H2O


oder Schritt für Schritt:

Aluminiumhydroxid --> Aluminiumoxid + Wasser

  • Aluminiumhydroxid (Ionenverbindung oder Salz, Namensgebung s. Buch, S. 152-153):
    • Aluminium steht in der 3. Hauptgruppe --> bildet in Salzen immer 3fach positiv geladenen Kationen: Al3+
    • "Hydroxid" ist ein feststehender Begriff für das Molekül-Ion OH-.
    • Damit aus diesen beiden Ionen ein insgesamt ungeladenes Salz entstheht, müssen pro Al3+-Ion drei OH--Ionen vorhanden sein. Daraus ergibt sich die Formel für das Salz: Al(OH)3
  • Aluminiumhydroxid (Ionenverbindung oder Salz, Namensgebung s. Buch, S. 152-153):
    • Aluminium steht in der 3. Hauptgruppe --> bildet in Salzen immer 3fach positiv geladenen Kationen: Al3+
    • Sauerstoff steht in der 6. Hauptgruppe --> bildet in Salzen immer 2fach negativ geladene Anionen: O2-.
    • Damit aus diesen beiden Ionen ein insgesamt ungeladenes Salz entstheht, müssen pro zwei Al3+-Ionen drei O2--Ionen vorhanden sein. Daraus ergibt sich die Formel für das Salz: Al2O3
  • Wasser (Tivialname, muss man auswendig wissen): H2O
  • Al(OH)3 --> Al2O3 + H2O


2 Al(OH)3 --> Al2O3 + 3 H2O

Beschreibe den Aufbau des Stoffs Aluminiumhydroxid unter Verwendung von Fachbegriffen so genau wie möglich!

Es handelt sich um ein Salz (eine Ionenverbindung). Es besteht aus 3fach positiv geladenen Aluminium-Kationen und 2fach negativ geladenen Hydroxid-Anionen. Bei der chem. Formel handelt es sich um eine Verhältnisformel: Es liegen große Kristalle vor, die aus sehr vielen Ionen bestehen, die in einem starren Gitter im angegebenen Verhältnis vorliegen und sich alle gegenseitig anziehen.

Distanzunterricht Di, 11.05.

Da ich heute (Di, 11.05.) und morgen (Mi, 12.05.) aufgrund des Abiturs stark in organisatorische Aufgaben an der Schule eingebunden bin, müsst ihr an diesen beiden Tagen leider alleine klar kommen. Vergesst aber auf keinen Fall am Dienstag bis spätestens 08:15 Uhr eure Rückmeldung auf den "Start-in-den-Tag"-Auftrag im Schulmanager!

Ihr erhaltet hier drei Arbeitsaufträge für die drei Chemie-Unterrichtsstunden. Ich empfehle euch, jeden Arbeitsauftrag in der Zeit zu erledigen, die angegeben ist. Wenn ihr unbedingt eine andere Reihenfolge wählen wollt: Von mir aus. Für zwei Arbeitsaufträge erhaltet ihr auch im Schulmanager einen Auftrag, auf den ihr bitte eure entsprechend passende Lösung hochladet:

  • Dienstag, 1. Std. (08:00 - 08:45 Uhr): Knobelaufgaben auf S. 132 lösen - Abgabe eines Lösungsvorschlags im Schulmanager erforderlich!
  • Dienstag, 2. Std. (08:45 - 09:30 Uhr): Abschließende Rätsel zum gesamten bislang behandelten Stoff in org. Chemie
  • Mittwoch, 2. Std. (09:45 - 10:30 Uhr): Versuch "CO2-Löscher" durchführen und Aufgaben dazu bearbeiten - Abgabe eines Lösungsvorschlags im Schulmanager erforderlich! Achtung: Die Aufgaben lassen sich auch lösen, wenn man den Versuch nicht durchgeführt hat (z.B. weil ihr kein Backpulver, keinen Essig oder kein Teelicht zu Hause hattet)!


Versuch: Knobelaufgaben (Säuren und Ester)

Löst in eurem Buch auf der Seite 132 die folgenden Aufgaben:

  • Nr. 1
  • Nr. 2
  • Nr. 3: Der Begriff "Disproportionierung" ist z.B. hier erklärt: Wikipedia
  • Nr. 4
  • Nr. 7: Evtl. hilft hier der folgende verlinkte Abschnitt: Wikipedia. Nur den verlinkten Abschnitt, nicht die ganze Seite lesen (also natürlich dürft ihr das, aber ihr müsst es nicht)
  • Nr. 8: Eisessig ist eine weitere Bezeichnung für reine Essigsäure. Diese hat einen Schmelzpunkt von 17°C. Bewahrt man Eisessig daher im Kühlschrank auf, liegt ein (kalter) Feststoff vor.


Versucht alle Lösungen auf ein Blatt zu bekommen --> Foto davon machen --> auf entsprechenden Arbeitsauftrag im Schulmanager hochladen!


Rätsel zum bisher behandelten Stoff

Der folgende Link leitet euch auf eine Seite unseres "alten RMG-Wikis". Dort habe ich vor Jahren eine "Grundwissens-Seite" angelegt. Ich bin noch nicht dazu gekommen, sie ins neue Wiki umzuziehen.

  • Zum einen zeigt euch die Seite kompakt, was ihr in diesem Schuljahr alles schon gelernt habt (bzw. haben solltet) ;)
  • Darüber hinaus sind einige einfachen Rätsel enthalten. Natürlich könnt ihr euch in einigen Fällen auch nur schnell die Lösung anzeigen lassen und danach sagen "Klar, hätte ich gewusst." Ich empfehle euch aber, euren Lösungsvorschlag zunächst wirklich aufzuschreiben und dann auf den Lösungsbutton zu klicken (sofern einer vorhanden ist). Erst dann könnt ihr euch wirklich sicher sein, dass ihr die korrekte Lösung gewusst hättet.
  • Hier geht´s zur Grundwissens-Seite: Hier klicken


Versuch: CO2-Löscher

Ihr benötigt:

  • ein schmales Glas, in das gerade so ein Teelicht passt
  • ein Teelicht
  • ein größeres Gefäß, z.B. Messbecher
  • ein Geschirrtuch (o.ä.)
  • ein Päckchen Backpulver
  • Essig oder besser: Essigessenz


Durchführung:
CO2Schütten V.jpg

  • Entzündet das Teelicht im schmalen Glas
  • Gebt das Backpulver in das große Gefäß und legt das Geschirrtuch bereit
  • Schüttet nun etwa 50 - 100mL Essig auf das Backpulver und bedeckt dann sofort das Gefäß mit dem Geschirrtuch. (Hinweis: Bei dem Versuch entsteht das Gas Kohlenstoffdioxid. Das ist schwerer als Luft und soll im Messbecher bleiben. Durch kleinste Luftverwirbelungen wird es aber aus dem Messbecher gespült. Mit dem Geschirrtuch soll das verhindert werden.
  • Wartet ab, bis die Gasentwicklung nachlässt. Euer Messbecher ist nun randvoll mit Kohlenstoffdioxid (was man aber nicht sehen kann).
  • Zieht nun vorsichtig das Geschirrtuch ab. Gießt nun das Kohlenstoffdioxid in das schmale Gefäß mit der Kerze. Achtung: Nicht den Essig in das schmale Gefäß gießen!


Beobachtung/Erklärung:
Da das Gas Kohlenstoffdioxid schwerer als Luft ist, wird es in das schmale Glas "fallen" und dort die Luft verdrängen. Eine Verbrennung ist in reinem Kohlenstoffdioxid nicht möglich. Daher sollte die Kerze erlöschen. Wenn ihr auf "Video" klickt, seht ihr eine Variante, so wie das Ergebnis aussehen könnte.

CO2Schütten V1.gif


Einen Teilprozess bei der Reaktion von Zitronensäure mit dem Hauptbestandteil des Backpulvers, Natriumhydrogencarbonat, kann man vereinfacht so formulieren:

NaHCO3 + H3O+ --> CO2 + 2 H2O + Na+

Aufgaben

  • Begründe unter Angabe von Oxidationszahlen, ob es sich bei diesem Vorgang um eine Redoxreaktion handelt!
  • Um die Oxidationszahlen in diesen Fällen zu bestimmen ist es zwar nicht nötig, die Valenzstrichformeln dieser Stoffe zu betrachten, trotzdem: Zeichne die Valenzstrichformel von NaHCO3, H3O+, CO2 und 2 H2O
  • Falls es sich Deiner Meinung nach nicht um einen Redoxprozess handeln sollte, gib an, welcher Gruppe von chemischen Reaktionen man diesen Vorgang dann zuordnen könnte
  • Nimm zu dem folgenden Satz begründet Stellung: "In diesem Versuch tauchen C-Atome auf, also handelt es sich um organische Chemie"


Die vier Antworten passen locker auf ein Blatt --> Foto davon machen --> auf entsprechenden Arbeitsauftrag im Schulmanager hochladen!

Distanzunterricht Di, 11.05.

Ihr dürft heute zwischen zwei Versuchen wählen, die ihr durchführen sollt. Selbstverständlich dürft ihr auch beide machen, aber verpflichtend ist nur einer:

  • Den Versuch CO2-Löscher hattet ihr schon vor Weihnachten mal auf, damals aber freiwillig. Wenn ihr ihn damals nicht gemacht habt: Auf geht´s :).
    Am Ende des Versuchs ist eine Aufgabe gestellt, die ihr bitte bearbeitet und als Antwort auf den Arbeitsauftrag im Schulmanager schickt.
  • Der Versuch Apfel oxidieren ist neu. Hier sollt ihr am Ende keine Aufgabe bearbeiten, sondern es geht darum, den Versuch in Form eines "wissenschaftlichen Versuchsprotokolls" möglichst sachlich zu dokumentieren. Denkt immer daran: Ein Versuchsprotokoll besteht aus den Teilen "Versuchsaufbau/Durchführung" (hier wird beschrieben, was man getan hat), "Ergebnisse" (hier dokumentiert man in Wort und Bild die Ergebnisse des Versuchs - ohne dafür schon eine "Erklärung" zu geben) und "Erklärung/Diskussion" (hier versucht man unter anderem, die Ergebnisse zu erklären).


CO2-Löscher

Ihr benötigt:

  • ein schmales Glas, in das gerade so ein Teelicht passt
  • ein Teelicht
  • ein größeres Gefäß, z.B. Messbecher
  • ein Geschirrtuch (o.ä.)
  • ein Päckchen Backpulver
  • Essig oder besser: Essigessenz


Durchführung:
CO2Schütten V.jpg

  • Entzündet das Teelicht im schmalen Glas
  • Gebt das Backpulver in das große Gefäß und legt das Geschirrtuch bereit
  • Schüttet nun etwa 50 - 100mL Essig auf das Backpulver und bedeckt dann sofort das Gefäß mit dem Geschirrtuch. (Hinweis: Bei dem Versuch entsteht das Gas Kohlenstoffdioxid. Das ist schwerer als Luft und soll im Messbecher bleiben. Durch kleinste Luftverwirbelungen wird es aber aus dem Messbecher gespült. Mit dem Geschirrtuch soll das verhindert werden.
  • Wartet ab, bis die Gasentwicklung nachlässt. Euer Messbecher ist nun randvoll mit Kohlenstoffdioxid (was man aber nicht sehen kann).
  • Zieht nun vorsichtig das Geschirrtuch ab. Gießt nun das Kohlenstoffdioxid in das schmale Gefäß mit der Kerze. Achtung: Nicht den Essig in das schmale Gefäß gießen!


Beobachtung/Erklärung:
Da das Gas Kohlenstoffdioxid schwerer als Luft ist, wird es in das schmale Glas "fallen" und dort die Luft verdrängen. Eine Verbrennung ist in reinem Kohlenstoffdioxid nicht möglich. Daher sollte die Kerze erlöschen. Wenn ihr auf "Video" klickt, seht ihr eine Variante, so wie das Ergebnis aussehen könnte.

CO2Schütten V1.gif


Einen Teilprozess bei der Reaktion von Zitronensäure mit dem Hauptbestandteil des Backpulvers, Natriumhydrogencarbonat, kann man vereinfacht so formulieren:

NaHCO3 + H3O+ --> CO2 + 2 H2O + Na+


Aufgabe:
Begründet unter Angabe von Oxidationszahlen, ob es sich bei diesem Vorgang um eine Redoxreaktion handelt!

Lösungsvorschlag auf Blatt --> Foto machen --> Als Antwort auf Arbeitsauftrag im SM hochladen!


Apfel oxidieren

Material:
Ihr benötigt:

  • Einen Apfel
  • Zitronensaft (frisch oder auch nicht)
  • Eine Reibe oder ein Messer
  • etwas Geduld...


Durchführung:

  • Stellt Zitronensaft bereit (evtl. Zitrone auspressen).
  • Raspelt auf einer Reibe einen Apfel in kleine Stücke. Solltet ihr keine Raspel haben, dann schneidet den Apfel anders in so kleine Stücke wie möglich.
  • Verteilt die Apfelstücke auf zwei Untertassen. Das sind die beiden Ansätze, die ihr später miteinander vergleichen sollt.
  • Tropft auf den einen Ansatz Zitronensaft (nicht alles, ihr benötigt später den Saft noch einmal).
  • Stellt beide Ansätze für einige Minuten (20-30min) beiseite und vergleicht die Ansätze dann.


Dokumentation: Ich nehme an, ihr wisst was passiert: Die Apfelmasse wird braun. Dokumentiert euer Ergebnis, so gut ihr könnt! Achtet auf die Kriterien, die wir bereits besprochen haben:

  • Bei Fotos sollten keine Gegenstände des Hintergrundes zu sehen sein!
  • Wenn ihr keine Kamera habt, die für Nahaufnahmen geeignet ist, versucht es doch mit einer Skizze (tatsächlich mit Stift und Blatt oder auch am PC)!
  • Bilder brauchen dringend eine aussagekräftige Abbildungsbeschriftung!


Erklärung:

  • Recherchiert, woher die Braunfärbung kommt. Eine Seite im Internet, die relativ kurz und dabei verständlich ist, gibt es z.B. hier: Zur Homepage - Wenn sich die Seite öffnet, erscheint in der Regel zunächst ein Fenster, in dem "Privatsphäre-Informationen" angezeigt werden. Klickt auf "Einstellungen verwalten" unten links. Deaktiviert alle grünen Haken die bei "Legitimes Interesse" stehen (sollten 9 Stück sein). Ich bin mir ziemlich sicher: NIEMAND hat ein legitimes Interesse daran, eure Aktionen im Internet zu verfolgen!
  • Versucht die auf der Seite beschriebenen Zusammenhänge zeichnerisch darzustellen! - Im Text ist zum Beispiel von Chinonen die Rede. Deren chemische Formel wisst ihr zwar nicht, aber ihr könnt ja ein Symbol verwenden, z.B. eine geometrische Figur wie ein Sechseck. Vielleicht schafft ihr es auf diese Weise sogar so etwas ähnliches wie eine Redoxgleichung darzustellen (natürlich ohne Koeffizienten oder Indizes).
  • Auf der Seite steht, dass man die Braunfärbung von Äpfeln auch nachträglich mit Zitronensaft wieder aufheben kann. Probiert das!



Fertigt nun ein richtiges Versuchsprotokoll mit den einleitend beschriebenen Teilen (Durchführung, Ergebnisse, Erklärung) an. Es sollte alles auf eine Seite passen! --> Foto machen --> Als Antwort auf Arbeitsauftrag im Schulmanager hochladen

Distanzunterricht Donnerstag, 20.05., 8.Std.

Oberflächenspannung des Wassers

Zum Abschluss vor den Ferien ein Versuch zum Thema Wasser, den ihr sicher schon mal selbst ausprobiert habt: Lasst eine Büroklammer auf dem Wasser schwimmen!

benötigtes Material

  • kleines Glas
  • Büroklammern
  • Wasser
  • Spülmittel

Durchführung

  • Verwendet ein kleines Glas, das ihr randvoll mit Wasser macht.
  • Legt eine Büroklammer auf den Glasrand und schiebt sie vorsichtig auf die Wasseroberfläche.
  • Die Büroklammer muss absolut trocken und fettfrei sein.
  • Mache ein Foto, bei dem mindestens drei Büroklammern auf der Wasseroberfläche schwimmen!
  • Gebt auf euren Finger einen Tropfen Spülmittel
  • Bringt den Tropfen auf die Wasseroberfläche mit der Büroklammern. Nicht direkt auf eine Büroklammer, sondern nur in die Nähe.

C9NTG Wasser Oberflächenspannung.jpg
Diese Foto wäre nicht gültig, weil eine von den drei Büroklammern bereits untergegangen ist...

Theorie

  • Warum die Büroklammer schwimmt, wenn man sie vorsichtig auf die Wasseroberfläche legt ist in eurem Buch auf der S. 87, 2. Absatz in Verbindung mit der Abb. 6 erklärt!
  • Versucht andere kleine Gegenstände, die normalerweise untergehen, auf der Wasseroberfläche schwimmen zu lassen!
  • Warum hat es keinen Sinn diesen Versuch mit Öl anstatt mit Wasser durchzuführen?



Schöne Ferien euch allen!


Distanzunterricht Dienstag, 18.05.

Fotosynthese

In der letzten Biologie-Einheit ging es um den Umweltfaktor Temperatur. Ihr habt "Tiergeographische Regeln" kennengelernt, die einen Zusammenhang zwischen der Temperatur im Lebensraum und Körpermerkmalen bei Tieren herstellt. Bitte ladet euch den entsprechenden Hefteintrag dazu herunter, speichert ihn oder druckt ihn aus und klebt ihn ins Heft oder schreibt ihn einfach ab.
Heute soll es um einen anderen Umweltfaktor gehen: Licht. Auch Tiere werden teilweise sehr stark vom Licht beeinflusst, bevor wir dazu kommen, betrachten wir aber Pflanzen. Für sie ist die regelmäßige Versorgung mit Licht überlebensnotwendig.
Ihr habt sicherlich in eurer Schullaufbahn schon einmal die Fotosynthese besprochen, also den Prozess, bei dem Pflanzen mit Hilfe von Sonnenlicht die Stoffe Kohlenstoffdioxid und Wasser in Traubenzucker und Sauerstoff umwandeln.
Das folgende Video ist ziemlich alt. Die darin enthaltenen Versuche jedoch unschlagbar gut in Szene gesetzt. Schüler eines W-Seminars wollten mit mir diese Versuche schon einmal nachmachen und filmen, aber wir sind schlimm gescheitert. Umso größer ist die Anerkennung für die "Macher" des Videos.
Das Video zeigt nacheinander vier Versuche und dauert insgesamt ca. 18 Minuten. Stoppt das Video nach jeder Versuchseinheit und notiert euch:

  • Wie könnte eine "Überschrift" für den Versuch heißen?
  • Stellt den Versuchsaufbau grafisch dar (keinen Text, sondern nur einfache Skizzen).
  • Notiert in einem Satz das Ergebnis des Versuchs.
  • Zeitbedarf: Pro Versuch solltet ihr ca. 5 Minuten für die Bearbeitung der Aufgaben brauchen, im "schlimmsten" Fall also 20 Minuten. Mit Anschauen insgesamt 38 Minuten - müsste zu schaffen sein! :)



Distanzunterricht Dienstag, 18.05.

Heute mal was kreatives! Aber schon auch eine fachliche Vorbereitung auf das letzte Kapitel in diesem Schuljahr: Biomoleküle.
In diesem letzten Kapitel sollt ihr vieles, was ihr über organische Verbindungen bisher gelernt habt auf Moleküle übertragen, die für Lebewesen eine wichtige Rolle spielen. Tatsächlich solltet ihr in Biologie über diese Moleküle bereits gesprochen haben. Und genau aus diesem Grund bekommt ihr jetzt auch diese Aufgabe gestellt: Verarbeitet euer bereits vorhandenes Wissen über die Kohlenhydrate, Fette und Eiweiße zu einem ästhetisch anspruchsvollen, wissenschaftlichen Poster!
Wissenschaftliche Poster sind zu einem beliebten Mittel geworden, um kleinere (aber auch größere) Forschungsarbeiten übersichtlich und anschaulich zu präsentieren. Wenn ihr euch genauer über "wissenschaftliche Poster" informieren wollt, dann könnt ihr z.B. folgenden Links folgen:

  • Die Studienwerkstatt der Uni-Bremen hat ein pdf-Dokument mit etlichen Tipps zusammengestellt: Hier klicken
  • In dem pdf-Dokument sind auch zwei Seiten verlinkt, auf denen man bereits fertige wissenschaftliche Plakate anschauen kann: Zum Beispiel hier oder hier
  • So ein richtig wahnsinnig schönes yt-Video habe ich auf die Schnelle leider nicht gefunden. Ihr könnt natürlich "wissenschaftliches Poster" bei Google oder Youtube eingeben und ihr werdet tausende von Treffern erhalten, aber die ersten fünf, die ich mir angeschaut habe, hatten alle irgendwelche Haken.



Ein paar einfache Tipps:

  • Verwendet ein Präsentationsprogramm, um ein Poster zu erstellen. Hier lassen sich Texte, Bilder, Grafiken etc. am einfachsten anordnen und formatieren.
  • Hochformat ist günstiger (Entwurf --> Foliengröße --> Benutzerdefinierte Foliengröße --> "4:3" und "Hochformat" auswählen)
  • Geht sparsam mit grellen Farben und/oder Kontrasten um. Bleibt am besten in einer "Farbfamilie".
  • Poster werden in der Regel relativ groß ausgedruckt (DIN A2, A1 oder sogar A0), daher könnt ihr auch sehr kleine Schriftgröße (10pt) verwenden. Diese sind immer noch gut lesbar. ABER ACHTUNG:
  • Niemand will ein Poster lesen, das Gigatonnen an Text enthält! Versucht eure fachlichen Inhalte gut zu veranschaulichen.



Inhalt:

  • Als Ausgangspunkt könnt ihr eure Biologie-Schulbuch verwenden (S. 18, 19)
  • Ihr könnt natürlich auch im Internet recherchieren.
  • Bleibt inhaltlich aber bei dem, was ihr schon gelernt (inzwischen aber vielleicht wieder vergessen) habt.
  • Zum Veranschaulichen eurer Inhalte könnt ihr selbst Fotos machen (z.B. von Nahrungsmitteln), selbst Symbole erstellen (ähnlich wie die Abbildungen auf S. 18 im Bio-Schulbuch) oder auch Grafiken aus dem Netz verwenden (z.B. Gehalt von ungesättigten Fettsäuren in verschiedenen Ölsorten)


Das folgende Plakat wurde mit PowerPoint erstellt und enthält keinerlei sinnvollen Inhalt. Es geht lediglich darum, zu zeigen, wie eine grundsätzliche Aufteilung aussehen könnte:

C10NTG PosterVorschlag.jpg

Verwendet nicht mehr als 90min. für diesen Arbeitsauftrag! Man kann sicher deutlich mehr Zeit investieren, um immer mehr Details zu erzeugen, aber ihr sollt auch lernen, mit der Ressource Zeit effektiv umzugehen. Ich empfehle daher zunächst das Plakat in Grundzügen zu entwerfen und je nach zur Verfügung stehender Zeit nach und nach Aspekte zu vertiefen, zu verfeinern oder optisch aufzuhübschen. Beim "linearen Arbeiten" (das heißt: Ich fange oben auf dem Plakat an und mache alles sofort super genau und super schön) kann es leicht passieren, dass die zur Verfügung stehende Zeit aufgebraucht ist und das Plakat aber noch lange nicht fertig wird. Das sollte nicht bessern.
Speichert die Präsentation als pdf-Datei ab und schickt sie mir als Antwort auf den Arbeitsauftrag im Schulmanager. Wir hören uns morgen (Mittwoch, 19.05.) in einer Videokonferenz.

Distanzunterricht Montag, 17.05.

Heute ein paar anspruchsvollere Aufgaben zum Thema Redoxgleichungen. Notiert eure Lösungen bitte auf einem Blockblatt, wir besprechen alles am Donnerstag in der 6. Std.
Achtung: Bei sämtlichen hier besprochen Prozessen werden immer nur Teile der chemischen Gesamtgleichung betrachtet. Das vollständige Aufstellen einer Redoxgleichung, so dass auf beiden Seiten des Reaktionspfeils tatsächlich die gleiche Anzahl von Teilchen steht, erfordert etwas Geschick und wird erst nach den Pfingstferien besprochen!


Redoxgleichungen

Beispiel
Bei der Herstellung von reinem Eisen (Fe) strömt das Gas Kohlenstoffmonoxid (CO) durch heißes Eisenerz, welches hauptsächlich Eisenoxid (Fe2O3) enthält. Neben dem gewünschten Eisen entsteht auch Kohlenstoffdioxid (CO2)
Zeige anhand der Oxidationszahlen auf, wo in diesem Beispiel eine Reduktion und wo eine Oxidation stattgefunden hat!

C9NTG Redox Bsp Hochofen.jpg



Aufgabe 1
Mangan (Mn) ist ein Element, welches gerne als "Chamäleon" bezeichnet wird. Das liegt daran, dass Manganverbindungen je nach Oxidationszahl des Mangans unterschiedliche gefärbt sind. Man kann also anhand der Farbe schon erkennen, welche OZ vorliegt. Schüttet man eine violette Lösung, die Permangant-Ionen enthält (MnO4-) in eine saure Sulfit-Lösung (SO32-), so "verschwindet" die violette Farbe. Tatsächlich sind jedoch farblose Mn2+-Ionen entstand und gleichzeitig fand eine Umwandlung von Sulfit in Sulfat statt (SO32-).
Zeige anhand der Oxidationszahlen auf, wo in diesem Beispiel eine Reduktion und wo eine Oxidation stattgefunden hat!

Aufgabe 2 (Bild: Abb. 1 auf S. 138 im Buch)
Wirft man ein Stück Kupfer (Cu) in Salpetersäure (HNO3), so löst es sich unter Entwicklung eines sehr giftigen, braunen Gases auf. Bei dem Gas handelt es sich um Stickstoffdioxid (NO2), das Kupfer selbst regiert zu Cu2+-Ionen.
Zeige anhand der Oxidationszahlen auf, wo in diesem Beispiel eine Reduktion und wo eine Oxidation stattgefunden hat!

Aufgabe 3 (Bild: Abb. 1 auf S. 146 im Buch)
Im Labor kann man ein kleine Portion Kupfer(II)-oxid (CuO) in ein Glasrohr legen, durch das Wasserstoffgas (H2) strömt. Erhitzt man von außen das Kupfer(II)-oxid, so regiert es nach einiger Zeit mit dem vorbei strömenden Wasserstoff zu elementarem Kupfer (Cu). Gleichzeit entsteht bei dieser Reaktion Wasser (H2O).
Zeige anhand der Oxidationszahlen auf, wo in diesem Beispiel eine Reduktion und wo eine Oxidation stattgefunden hat!

Aufgabe 4 (schwer, also wirklich: sehr schwer!)
Wenn die Verkehrspolizei heute überprüfen möchte, ob eine Autofahrerin bzw. ein Autofahrer Alkohol getrunken hat, dann muss die entsprechende Person in ein elektronisches Messgerät pusten. Das Gerät zeigt dann direkt einen Atemalkohol-Gehalt in Promille an. Früher gab es diese Technik noch nicht. Zwar musste man auch pusten, aber durch ein Röhrchen hindurch in einen Beutel, ähnlich wie ein Luftballon. In dem Röhrchen befand sich gelbes Kaliumdichromat (K2Cr2O7). Wenn die autofahrende Person Alkohol in der Ausatemluft hatte, dann entstanden grüne Chrom(III)-Ionen (Cr3+). Der Alkohol reagierte dabei zur Essigsäure. Die folgende Abbildung zeigt die Valenzstrichformeln der beiden Verbindungen. Hier müsst ihr die Oxidationszahlen so bestimmen, wie ihr es ganz am Anfang gelernt habt: Durch Aufteilen der bindenden Elektronenpaare!
C9NTG EthanolEssigsäure Valenzstrich.jpg

Zeige anhand der Oxidationszahlen auf, wo in diesem Beispiel eine Reduktion und wo eine Oxidation stattgefunden hat!

Haltet eure Lösungen am Donnerstag in der Videokonferenz bereit!

Präsentationstechnik

Ein guter Vortrag mit einem Präsentationsprogramm

Informationsquellen

  • Zunächst die im Unterricht besprochenen Bewertungskriterien: pdf-Datei
  • Hier eine Internetseite, die ein einfach verständliches, klares Video enthält, in dem auf grundsätzlichen Anforderungen an ein Referat eingegangen wird. Im Video wird mehrfach erwähnt, dass man sich gut überlegen sollte, ob man wirklich ein Präsentationsprogramm verwendet. Diese Option habt ihr nicht. Es geht bei dieser Referats-Runde ja genau darum, gute Präsentationen mit einem Präsentationsprogramm zu gestalten. Trotzdem kann das Video sehr hilfreich sein: Hier klicken
  • Mit dem folgenden Link gelangt ihr zu einer Internetseite, auf der ihr euch durch eine (zugegeben sehr lange) Präsentation von Alexei Kapterev (ein prof. Redner-Coach) klicken könnt. Die Präsentation ist in englischer Sprache und plakativ, aber ich persönlich finde sie lustig: Hier klicken



Organisatorisches

  • Die Referate sollen 10 Minuten dauern. Abweichungen von 2min. mehr oder weniger führen i.d.R. zu Punktabzug.
  • Das Referat entspricht einem angekündigten Leistungsnachweis, daher: Wer anwesend ist, muss es halten! Wer fehlt, muss die üblichen Bestimmungen einhalten (Entschuldigung über den Schulmanager spätestens am zweiten Schultag nach Krankheitsbeginn). Im Krankheitsfall wird ein Ersatztermin festgelegt; das kann auch ein Freitagnachmittag sein, an dem das Referat nachgeholt werden muss.
  • Technik: Wenn ihr das Referat an der Schule haltet, solltet ihr eure Präsentation min. einen Tag vorher einmal an einem Rechner in der Schule ausprobieren. Wer die Präsentation am Tag des Referats nicht zum Laufen bekommt, muss eben auf die Visualisierung verzichten (= 0 Pkt. in diesem Bewertungs-Bereich).
  • Technik: Solltet ihr euch am Tag des Referats im Distanzunterricht befinden, haltet ihr das Referat von zu Hause aus. Dazu ist es erforderlich, dass ihr die Kamera aktiviert. Eine Bewertung ohne euch sehen zu können, ist nicht möglich.
  • Falls jemand sein Referat verschieben möchte: Rechtzeitig mit mir absprechen! - Was immer funktioniert: Wenn ihr einen Tauschpartner habt!



Themenübersicht

  • Di 08.06., 1. Std.: KB - Thema: ???, OB - Thema: ???, LiB - Thema: ???
  • Di 08.06., 2. Std.: LeB - Thema: ???, FB - Thema: ???, VD - Thema: ???
  • Mi 09.06., 2. Std.: PD - Thema: ???, ME - Thema: ???, MG - Thema: ???
  • Di 15.06., 1. Std.: CH- Thema: ???, EH - Thema: ???, BH - Thema: ???
  • Di 15.06., 2. Std.: JaK - Thema: ???, JoK- Thema: ???, FL - Thema: ???
  • Mi 16.06., 2. Std.: PM - Thema: ???, EN- Thema: ???, LP- Thema: ???
  • Di 22.06., 1. Std.: AR - Thema: ???, LS - Thema: ???, EmS - Thema: ???
  • Di 22.06., 2. Std.: ElS- Thema: ???, AT- Thema: ???, AW- Thema: ???
  • Mi 23.06., 2. Std.: EW - Thema: ???, LW - Thema: ???