Q11 1b2 2020 21: Unterschied zwischen den Versionen
(AA f. Mo, 22.02.) Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(33 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
==Termine== | |||
{{Box-spezial | |||
|Titel=<span style="color:#900">'''Termine'''</span> | |||
|Inhalt= | |||
'''kleiner angesagter Leistungsnachweis''': Donnerstag, 01.10. (erledigt) <br> | |||
'''Schulaufgabe''': 19.04.21, Nachholtermin: 17.05., Lernstoff: s. unten | |||
|Farbe= #900 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #FCA | |||
|Hintergrund= #FCA | |||
}} | |||
<br> | |||
== Distanzunterricht Online-Einheiten== | == Distanzunterricht Online-Einheiten== | ||
=== Arbeitsaufträge für | |||
=== Distanzunterricht Donnerstag, 06.05.=== | |||
{{Box-spezial | |||
|Titel=<span style="color:#060">'''Gentechnische Werkzeuge und Verfahren - Überblick'''</span> | |||
|Inhalt= | |||
'''Ziel''': Der Mensch ist heute in der Lage, das Erbgut von Lebewesen gezielt zu verändern. Damit kann man z.B. | |||
* die Eigenschaften von Pflanzen verändern, | |||
* Bakterien und Hefen dazu veranlassen, Stoffe in großen Mengen herzustellen, die der Mensch dann isolieren und weiterverwenden kann, | |||
* genetische "Defekte" zu "reparieren". | |||
<br> | |||
Es gibt einen inzwischen etwas in die Jahre gekommenen "Selbstlernkurs", den ich die Schülerinnen und Schüler meiner Bio-Oberstufenkurse als Einleitung zur Thematik im Computerraum immer alleine bearbeiten habe lassen. Das klappte eigentlich immer ganz gut. Der Kurs wurde von einem Herrn Mallig in Freiburg entwickelt. | |||
* Für diesen Selbstlernkurs solltet ihr euch ca. 30-45 Minuten Zeit nehmen. | |||
* Der folgende Link führt euch zur Startseite [http://www.mallig.eduvinet.de/bio/gentecnk/gentek10.htm Selbstlernkurs-Start] | |||
** Dort wird noch mal erklärt, was ein Selbstlernkurs ist und man steigt in die Thematik "Gentechnik" ein. | |||
** Ihr kommt immer zur nächsten Seite mit einem recht unscheinbaren '''Link unten rechts''' auf jeder Seite "zur nächsten Seite". | |||
** Zurück kommt ihr am besten mit den "Back"-Buttons eures Browsers | |||
* Solltet ihr euch im Netz des Selbstlernkurses verlieren, könnt ihr auch immer wieder auf der folgenden Seite einsteigen: [http://www.mallig.eduvinet.de/bio/gentecnk/gentek12.htm Selbstlernkurs-Übersicht]<br> | |||
In dem Lernzirkel werden Grundbegriffe und Methoden erklärt, die ihr für die nächsten Unterrichtseinheiten dringend braucht. Ihr sollt erklären können: | |||
* Was "können" '''Restriktionsenzyme'''? | |||
* Was "können" '''Ligasen'''? | |||
* Was sind '''Vektoren'''? | |||
* Was bedeutet '''Klonierung'''? | |||
* Wie funktioniert die '''PCR (Polymerase-Chain-Reaction)'''? | |||
* Was ist '''cDNA'''? | |||
<br> | |||
Wer sich nicht am PC durch den Lernzirkel klicken möchte, kann auch im Schulbuch (draußen?) folgende Seiten lesen: | |||
* Buch, S. 112-113 (Restriktionsenzyme, Ligasen, Marker) | |||
* Buch, S. 114-115 (Vektoren) | |||
* Buch, S. 118-119 (PCR) | |||
<br> | |||
Es gibt von BRalpha einen Übersichtsfilm über die Grundlagen der Gentechnik. Er dauert 16min. Zusammen mit dem Lernzirkel ist das innerhalb der vorgegebenen 45min. Unterrichtszeit nicht zu schaffen. Wer ihn trotzdem sehen möchte (z.B. als "Hausaufgabe"):<br> | |||
[https://www.br.de/fernsehen/ard-alpha/sendungen/schulfernsehen/grundlagen-genetik-gentechnik100.html Hier klicken]<br> | |||
Vor allem die PCR-Methode ist sehr schön visualisiert. | |||
|Farbe= #060 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFC | |||
|Hintergrund= #DFC | |||
}} | |||
=== Distanzunterricht Montag, 26.04.=== | |||
In der ersten Stunde wurde das Jacob-Monod-Modell zur Regulation von Genaktivität besprochen. Rekapituliert für euch selbst folgende Punkte: | |||
* Warum macht es biologisch Sinn, die Aktivität von Genen zu regulieren? | |||
* Was bedeuten die Begriffe '''Regulator-Gen, Promotor, Operator, Struktur-Gen, Repressor, Effektor (bzw. Induktor)''' | |||
* Was ist der Unterschied zwischen Enzyminduktion und Enzymrepression? | |||
Falls ihr noch einmal ein Video dazu schauen wollt, hier ist eins (ca. 5min.):<br> | |||
{{#ev:youtube |0vnANNz-jg8}}<br> | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#607">'''Mutationen'''</span> | |||
|Inhalt= | |||
'''Ziel''': <br> | |||
Ihr sollt den Begriff "Mutation" erklären können. Ihr sollt wissen, dass es viele verschiedene Formen von Mutationen gibt. Schaut dazu das folgende Video:<br> | |||
{{#ev:youtube |lf-gTMcLEf4}}<br> | |||
* Lest dann zunächst S. 76 - 77 (ohne den blauen Zettelkasten) | |||
* Detaillierter müsst ihr über '''Punktmutationen''' Bescheid wissen, und diese in folgende Untergruppen einstufen können: "Stumme Mutation", "Missense-Mutation" und "Nonsense-Mutation". Dazu eine Aufgabe: | |||
<br> | |||
<br> | |||
Betrachtet den folgenden DNA-Strang! Der gekennzeichnete Promotor stellt den Startpunkt für die RNA-Polymerase zur Transkription dar. Die Pfeile geben Richtung und exaktes Startnukleotid der Transkription an. | |||
* Leitet zunächst die entstehende mRNA ab! | |||
* Übersetzt diese dann mit Hilfe der Code-Sonne auf S. 68 im Buch in die entstehende Aminosäure-Kette! | |||
[[Datei:Punktmutationen_AA.jpg|800px]] | |||
{{Lösung versteckt| | |||
[[Datei:Punktmutationen_ML_1.jpg|800px]]<br> | |||
* Beliebte Fehler Nr. 1: Ihr habt den falschen Strang in mRNA transkribiert. - Die RNA-Polymerase kann einen vorliegenden DNA-Strang nur von 3´ nach 5´ablaufen, daher müsst ihr den oberen wählen! | |||
* Beliebter Fehler Nr. 2: Ihr habt die mRNA auch von 3´nach 5´ übersetzt. - Die Codesonne wird aber von 5´(innen) nach 3´(außen) gelesen! | |||
* Beliebter Fehler Nr. 3: Ihr habt mit der Translation nicht beim Startcodon 5´-AUG-3´angefangen. - Müsst ihr aber! | |||
|Lösung|Lösung ausblenden}} | |||
<br> | |||
Geht jetzt die mit eingekringelten Ziffern gekennzeichneten Basen auf der DNA durch. Fangt mit der 1 an, ersetzt die ursprünglich in der DNA enthaltene Base durch die neue (also im 1. Beispiel: das G wird durch ein T ersetzt). Führt jetzt Transkription und Translation erneut durch und beschreibt was für Konsequenzen zu erwarten sind! | |||
{{Lösung versteckt| | |||
[[Datei:Punktmutationen_ML_2.jpg|800px]]<br> | |||
* Es entsteht ein Stopp-Codon. | |||
* Das Protein, das entstehen sollte, ist viel zu kurz. | |||
* Es wird nicht funktionieren. | |||
* Eine solche Punktmutation nennt man "Nonsens-Mutation". | |||
|Lösung|Lösung ausblenden}} | |||
<br> | |||
Geht zur nächsten Base, die verändert werden soll und mit 2 gekennzeichnet ist (1 soll wieder normal sein), ersetzt die ursprünglich in der DNA enthaltene Base durch die neue. Führt wieder Transkription und Translation durch und beschreibt was für Konsequenzen zu erwarten sind! | |||
{{Lösung versteckt| | |||
[[Datei:Punktmutationen_ML_3.jpg|800px]]<br> | |||
* Obwohl ein Nukleotid verändert wurde, wird trotzdem die gleiche Aminosäure ins Peptid eingebaut | |||
* Daher sind "nach außen" keine Veränderungen zu erwarten. | |||
* Die Mutation hat keine Auswirkungen auf den Organismus | |||
* Eine solche Punktmutation nennt man "Stumme Mutation". | |||
|Lösung|Lösung ausblenden}} | |||
<br> | |||
Geht zur nächsten Base, die verändert werden soll und mit 3 gekennzeichnet ist (1 und 2 sollen wieder normal sein), ersetzt die ursprünglich in der DNA enthaltene Base durch die neue. Führt wieder Transkription und Translation durch und beschreibt was für Konsequenzen zu erwarten sind! | |||
{{Lösung versteckt| | |||
[[Datei:Punktmutationen_ML_4.jpg|800px]]<br> | |||
* Es entsteht ein Triplett, welches für eine andere Aminosäure codiert. | |||
* Die Auswirkungen können sehr unterschiedlich sein. | |||
* Wenn die AS eine entscheidende Stelle in der Kette einnimmt, z.B. weil genau an dieser Stelle ein Knick erfolgen soll, kann es sein, dass die Form des Proteinen stark vom Original abweicht, dann ist das Protein unter Umständen stark in seiner Funktion eingeschränkt oder gestört. Manchmal ist der Austausch einer Aminosäure aber gar nicht so schlimm, z.B. weil sie an einer Stelle weit weg vom aktiven Zentrum des Enzyms sitzt. Dann ist es evtl. sogar noch voll funktionsfähig. | |||
* Eine solche Punktmutation nennt man "Missense-Mutation". | |||
|Lösung|Lösung ausblenden}} | |||
<br> | |||
Die Änderung 4 ist nichts neues, die Änderung 5 bespreche ich im Unterricht!<br> | |||
<br> | |||
<span style="color:#006">'''Fertig für heute.'''</span><br> | |||
* Die entsprechenden Kapitel des Skripts sind hochgeladen. | |||
|Farbe= #607 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DCF | |||
|Hintergrund= #DCF | |||
}} | |||
=== Distanzunterricht, Montag 08.03: Q11-Corona-Recap === | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Wiederholung aller bisherigen Einheiten'''</span> | |||
|Inhalt= | |||
Die folgende Einheit stellt eine Wiederholung einiger Einheiten dar, die in den letzten Wochen während des Home-Schoolings besprochen wurden. Bitte prüft, ob ihr die folgenden Fragen beantworten könnt. Natürlich liegen manche Inhalte schon etwas länger zurück, daher dürft ihr gerne auf dieser Seite scrollen, um zu einer Lösung zu gelangen.<br> | |||
Ihr erhaltet am Montag, 08.03. den klassischen "Start-in-den-Tag-Arbeitsauftrag" über den Schulmanager. Ich hätte gerne von ALLEN ein Feedback, welche Fragen für euch nicht lösbar waren und welche nicht. Das Feedback soll als Antwort auf den Arbeitsauftrag im Schulmanager erfolgen (entweder ein Foto von euren handschriftlichen Aufzeichnungen oder ein Textdokument hochladen). Ihr habt Zeit prinzipiell Zeit bis Mittwoch, 23:59 Uhr, empfehle aber dringend das Feedback sofort nach der Unterrichtsdoppelstunde (also 09:30 Uhr) abzugeben. Das Feedback stellt für mich eine wichtige Grundlage für das weitere Vorgehen im Unterricht dar. <br> | |||
Bitte beachtet jedoch folgendes: | |||
* Solltet ihr mir rückmelden, dass ihr keine einzige Frage beantworten konntet, bedeutet das nicht, dass ich im Unterricht alles wiederholen werde. Definitiv nicht. | |||
* Wenn ihr während des Home-Schoolings keine Arbeitsaufträge hier im Wiki erledigt habt, dann brauche ich auch kein Feedback zu den Fragen von euch. Antwortet auf den '''Arbeitsauftrag im Schulmanager''' einfach mit "Keine Teilnahme". | |||
* Ich gehe davon aus, dass viele von euch alle Fragen (evtl. mit ein bisschen Recherche) beantworten können. In dem Fall antwortet auf den '''Arbeitsauftrag im Schulmanager''' einfach mit "Alles o.k." (o.ä.) | |||
<br> | |||
Los geht´s: | |||
<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Stammbaumanalyse + Heterozygoten-Test, pränatale Diagnosemöglichkeiten'''</span> | |||
|Inhalt= | |||
* Bei der '''Mukoviszidose''' handelt es sich um eine autosomal-rezessiv vererbte Krankheit. Eine phänotypisch gesunde Frau möchte wissen, wie hoch die Wahrscheinlichkeit dafür ist, dass sie ein Kind zur Welt bringt, das an Mukoviszidose leidet. Der Grund ihrer Besorgnis ist ihr Bruder, der ebenfalls an dieser Krankheit leidet. Ihre Schwester und ihre Eltern sind jedoch phänotypisch gesund. | |||
** Geben Sie - soweit das möglich ist - alle möglichen Genotypen aller genannten Personen! | |||
** Welche Aussagen über die Wahrscheinlichkeit eines kranken Kindes kann man treffen? | |||
* Was ist ganz allgemein ein "Heterozygoten-Test"? (Kein konkretes Beispiel). | |||
* Beschreibe kurz zwei pränatale Diagnosemöglichkeiten! | |||
{{Lösung versteckt| | |||
* [[Datei:Recap_Corona20_1_A1_ML.jpg|400px]] | |||
** Über die Wahrscheinlichkeit eines kranken Kindes kann man hier sehr wenig konkretes sagen. Allgemein gilt: Wenn die fragende Frau den Genotyp AA besitzt, wird ein Kind nie an Mukoviszidose leiden. Wenn die Frau den Genotyp Aa besitzt, kommt es auf den Genotyp des Mannes an. Ein möglicher Mann wird im vorliegenden Szenario überhaupt nicht erwähnt, vielleicht weil die Frau auch noch gar keinen hat. Da Erbkrankheiten in der Regel selten sind, ist die Wahrscheinlichkeit, dass ein Mensch aus einer Familie mit Mukoviszidose auf einen Menschen trifft, der ebenfalls aus einer Familie mit Mukoviszidose stammt eher gering (keine genauen Werte). <br> | |||
** Möglich Fälle: Wenn der Mann den Genotyp AA aufweist, ist die Wahrscheinlichkeit für ein krankes Kind gleich 0. Wenn er den Genotyp Aa aufweist (und die Frau auch), dann ist die Wahrscheinlichkeit für ein krankes Kind 25%. Sollte der Mann den Genotyp aa besitzen (früher erreichten Mukoviszidose-Patienten nicht das fortpflanzungsfähige Alter, durch Fortschritte in der medizinischen Betreuung sind heute jedoch bereits 50% der Menschen mit Mukoviszidose älter als 18 Jahr), dann beträgt die Wahrscheinlichkeit für ein krankes Kind 50% (immer vorausgesetzt die Frau besitzt den Genotyp Aa). | |||
* '''Heterozygotentest:''' Ein Test mit dem man bei phänotypisch gesunden Menschen überprüfen kann, ob bezüglich einer rezessiven Erbkrankheit ein heterozygoter Genotyp vorliegt (Aa). | |||
* '''Fruchtwasseruntersuchung''': Entnahme von Fruchtwasser über die Bauchdecke der schwangeren Frau mit einer Spritze. Untersuchung der darin enthaltenen kindlichen Zellen. <br> '''Ultraschall-Untersuchung''': Durch "Beschallung" des Bauchraums der schwangeren Frau und Auffangen des Echos können Bilder vom Fötus erstellt werden. Fehlentwicklungen können so frühzeitig erkannt werden. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Numerische Chromosomen-Aberrationen'''</span> | |||
|Inhalt= | |||
* Nenne eine häufig vorkommende, lebensfähige autosomale, numerische Chromosomenaberration! | |||
* Nenne eine häufig vorkommende, lebensfähige gonosomale, numerische Chromosomenaberration! | |||
* Beschreibe möglichst detailliert das Phänomen "Non-Disjunction"! | |||
{{Lösung versteckt| | |||
* z.B. Trisomie 21 (Down-Syndrom), auch noch möglich: Trisomie 13 (Pätau-Syndrom) oder Trisomie 18 (Edward-Syndrom) | |||
* z.B. Turner-Syndrom (45, X0), auch möglich: Klinefelter- (47, XXY), Triplo-X- (47,XXX), Diplo-Y-Syndrom (47, XYY) | |||
* In der ersten oder zweiten meiotischen Teilung kommt es zu einer "Nicht-Trennung" von Chromosomen: Im einen Fall (bei der ersten meiotischen Teilung) werden die homologen Chromosomen nicht voneinander getrennt, im zweiten Fall (bei der zweiten meiotischen Teilung) werden die Chromatiden nicht voneinander getrennt. Es entstehen Tochterzellen, deren Chromosomenzahlen von der Norm abweichen. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''DNS als Träger der Erbinformation, Bau der DNS'''</span> | |||
|Inhalt= | |||
* Nenne die Grundbausteine der DNS! | |||
* Erkläre in Bezug auf die DNS die Begriffe "komplementär und antiparallel"! | |||
* Wie lautet die Sequenz des komplementären Strangs zu 5´-TCTGAG-3´ | |||
{{Lösung versteckt| | |||
* Als "Grundbausteine" der DNS werden gerne "die Nukleotide" genannt. Das ist die Einheit aus einem Zucker (Ribose), einem Phosphat-Rest und einer von vier möglichen Basen (Adenin, Thymin, Cytosin, Guanin). | |||
* '''komplementär''': Es gibt nur zwei Paarungen von Basen, die aufgrund des räumlichen Baus in einem intakten DNS-Strang gegenüberliegen können: Adenin und Thymin bzw. Guanin und Cytosin. Allgemein bedeutet "komplementär": Nicht identisch, aber sich ergänzend. <br> '''antiparallel''': Betrachtet man das Zucker-Phosphat-Gerüsts eines DNS-Einzelstrangs, dann liegen aufgrund des Baus zwei verschiedene Enden vor. Man bezeichnet das eine Ende als 3´-Ende, das andere als 5´-Ende. Insofern kann man beim Ablesen des DNS-Einzelstrangs ganz klar eine Richtung festlegen, z.B. von '''3´ nach 5´''' (ähnlich wie beim echten Lesen eines Buchs: Im Deutschen liest man die Buchstaben von '''links nach rechts''', im Hebräischen von '''rechts nach links'''). Wenn man die einmal festgelegte Richtung des einen DNS-Einzelstranges betrachtet und mit der Richtung des gegenüberliegenden DNS-Einzelstrangs vergleicht, stellt man fest, dass dieser genau entgegengesetzt gerichtet ist. Das bezeichnet man als antiparallel. | |||
* 3´-AGACTC-5´ | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Die Replikation'''</span> | |||
|Inhalt= | |||
* Warum muss die DNS überhaupt repliziert werden? | |||
* Bei der Replikation spielen die Enzyme "Helicase", "DNS-Polymerase", "Primase" und "Ligase" eine wichtige Rolle. Beschreibe von jedem Enzym kurz die Aufgabe! | |||
* Betrachtet den ''leading-strand'': Eines der oben genannten Enzyme ist hier nicht nötig. Welches? | |||
* Warum gibt es Okazaki-Fragmente? (Achtung: Die Frage lautet nicht: Was sind Okazaki-Fragmente? Aber das sollte man natürlich trotzdem wissen.) | |||
{{Lösung versteckt| | |||
* Nach einer Zellteilung liegt nur noch die Hälfte des diploiden Chromosomensatzes vor. Durch die Replikation wird die ursprüngliche Menge Erbgut wieder hergestellt. | |||
* Helicase: Entdrillt die DNS; DNS-Polymerase: Setzt entsprechend der Vorlage des Einzelstranges die richtigen komplementären Nukleotide zum gegenüberliegenden Strang zusammen; Primase: Nach dem Öffnen der DNS erzeugt dieses Enzym an einem bestimmten Punkt der DNS ein kurzes Stück komplementäre RNS. Dieses kurze Stück Doppelstrang (Primer) ist der Startpunkt für die DNS-Polymerase; Ligase: Sie verknüpft Okazaki-Fragmente am Zucker-Phosphat-Gerüst miteinander | |||
* Die Ligase. Auf dem dem leading-strand kommen keine Okazaki-Fragmente vor, die verknüpft werden müssten. | |||
* Die DNS-Polymerase kann einen DNS-Einzelstrang nur in eine Richtung ablaufen: Von 3´nach 5´. Im Falle des leading-strands kann sie der Helicase daher einfach hinterher laufen. Auf dem lagging-strand muss die Polymerase immer erst warten, bis ein Stück Doppelstrang entdrillt und dann ein Primer gesetzt wurde. Ab da kann sie dann von der Helicase weg arbeiten bis zum vorangegangenen Primer. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
{{Box-spezial | |||
|Titel=<span style="color:#C00">'''Feedback'''</span> | |||
|Inhalt= | |||
<span style="color:#C00">Jetzt bitte das Feedback über den Schulmanager abgeben. Danke! - Videokonferenz am Donnerstag.</span> | |||
<br> | |||
|Farbe= #C00 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #FCA | |||
|Hintergrund= #FCA | |||
}} | |||
=== Distanzunterricht, Montag 01.03. === | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Einstieg/Wiederholung'''</span> | |||
|Inhalt= | |||
Zur Erinnerung: Das langfristige Ziel dieser Einheit ist es, zu klären, wie ein Stück DNS die Ausprägung eines Merkmals (also z.B. eure Haarfarbe) beeinflussen kann.<br> | |||
In der letzten Einheit habt ihr den Aufbau der DNS kennengelernt. Bevor wir uns anschauen, wie dieser Aufbau nun ein sichtbares Merkmal beeinflussen kann, zunächst ein Zwischenschritt: <br> | |||
<br> | |||
Euer aktueller Körper, in dem ihr steckt, besteht aus ca. 100 000 000 000 000 Zellen. Entstanden seid ihr aber alle zunächst aus einer einzigen befruchteten Eizelle. Das Erbgut in dieser befruchteten Eizelle musste sehr oft vervielfältigt werden, damit alle Zellen eures heutigen Körpers exakt das gleiche Erbgut enthalten und eine Einheit bilden. Ihr kennt den Prozess schon, der hierbei eine entscheidende Rolle spielt: '''Die Mitose'''. <br> | |||
Sucht das Arbeitsblatt zum Thema '''Mitose''' heraus (auch im Buch wäre eine Abbildung)! Analysiert die einzelnen Schritte noch einmal und formuliert dann '''einen Satz''', der die relativ simple Frage beantwortet: | |||
<br> | |||
* Was passiert in der Meiose (weniger auf den Mechanismus eingehen, sondern auf das Ergebnis)? | |||
{{Lösung versteckt| | |||
Die Meiose ist ein Abschnitt während der Zellteilung, bei der das Erbgut eines Zellkerns in zwei gleich große Portionen aufgeteilt wird, die jeweils in den beiden entstehenden Tochterzellen landen. <br> | |||
An dem oben stehenden Satz erkennt man, dass folgende Aspekte berücksichtigt wurden (überprüft, ob euch das klar ist!): | |||
* Die Meiose ist nur ein Abschnitt der Zellteilung | |||
* Bei der Meiose wird das Erbgut im Zellkern halbiert | |||
* Die Tochterzellen enthalten nach der Meiose zunächst nur die Hälfte des ursprünglichen Erbguts. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Vorüberlegung 1'''</span> | |||
|Inhalt= | |||
Die Tochterzellen einer Zelle, die sich soeben geteilt hat, besitzen also nur die Hälfte des "normalen" Erbguts. Die folgende Abbildung verdeutlicht die Situation noch einmal an einem Chromosom. Macht euch anhand dieser Abbildung noch einmal klar: Aus wie vielen DNS-Fäden besteht das Erbgut eines Menschen? <u>Ohne</u> '''numerische Chromosomenaberration'''! (was war das noch mal?) <br> | |||
[[Datei:Repli_Vgl_Chromo_DNS.jpg|800px]] | |||
{{Lösung versteckt| | |||
* Numerische Chromosomenaberration: Abweichung von der "normalen Anzahl" an Chromosomen. Bsp.: Trisomie-21, Turner-Syndrom, Klinefelter-Syndrom | |||
* Normalerweise: '''23 Chromosomenpaare''' entspricht '''46 einzelnen Chromosomen''' entspricht '''92 Chromatiden'''. Ein Chromatid entspricht einem DNS-Faden, also besteht das Erbgut eines Menschen normalerweise aus '''92 DNS-Fäden'''. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Vorüberlegung 2'''</span> | |||
|Inhalt= | |||
Damit sich eine Tochterzelle erneut teilen kann, muss das "halbe Erbgut" zunächst wieder verdoppelt werden. Dieser Prozess nennt sich '''Replikation'''. Die Forscher, die maßgeblich an der Entschlüsselung dieses Prozesses mitgewirkt haben, waren Matthew Meselson und das Ehepaar Mary und Frank Stahl (müssten alle noch leben). Das Meselson-Stahl-Experiment soll hier nachempfunden werden.<br> | |||
Rein theoretisch gibt es drei verschiedene Möglichkeiten wie ein DNS-Faden repliziert (verdoppelt) werden kann: | |||
* '''konservativ''': Könnte man mit einem Kopierer vergleichen. Es gibt ein Orginal, das unverändert bleibt und ein Duplikat, das aus neuen Bausteinen zusammengebastelt wird. | |||
* '''semikonservativ''': Bei der DNS sind die beiden Einzelsträng komplementär. Das bedeutet, wenn ich den einen Einzelstrang kenne, kann ich den fehlenden einfach erzeugen. Das ermöglich eine semikonservative Replikation: Die doppelsträngige DNS wird in ihre zwei Einzelstränge getrennt, und der komplementäre wird jeweils neu ergänzt. | |||
* '''dispers''': Das könnte man wohl am ehesten mit... "irgendwie" oder "durcheinander" übersetzen. Gemeint ist: Das Original wird zerstückelt und mit neuen Bausteinen zu zwei Abbildungen des Originals wieder zusammengesetzt. Dafür gibt es in unserer Lebensumwelt kein vernünftiges Beispiel. | |||
Die folgenden Abbildungen zeigen einen grafischen Überblick über diese drei Varianten: <br> | |||
[[Datei:Repli_Mechanismen_denkbareVarianten.jpg|800px]]<br> | |||
<br> | |||
[[Datei:Repli_Mechanismen_denkbareVarianten_einfach.jpg|800px]]<br> | |||
<br> | |||
Das Problem an dieser Darstellung: Auf den Bildern könnt ihr aufgrund von Farben sehr schön sehen, welcher Teil der DNS alt ist und welcher neu. In der Realität geht das nicht! Erstens gibt es überhaupt kein Mikroskop, mit dem man einen DNS-Strang überhaupt sehen könnte und selbst wenn, wüsste man nicht, was an einem DNS-Strang alt und was neu ist... <br> | |||
Wir haben schon oft über solche Phänomene gesprochen: Man braucht ein Experiment, mit dem man etwas sichtbar machen kann, was eigentlich nicht sichtbar ist. Und genau hier kommt das Experiment von Meselson und Stahl ins Spiel. Sie machten sich folgenden Effekt zu Nutze: Isoliert man DNS aus Bakterien, kann man sie in einem Reagenzglas auf eine Salz-Lösung auftragen und den Ansatz stark zentrifugieren. Je nachdem, wie "schwer" (das ist nicht ganz korrekt, aber ich bleibe mal bei diesem Begriff) die DNS ist, wird sie beim Zentrifugieren durch die Zentrifugalkraft im Reagenzglas weiter nach unten gedrückt (oder gezogen, wie ihr wollt).<br> | |||
[[Datei:Repli_MeselsonStahl_VDesign.jpg|800px]]<br> | |||
Wenn man das Experiment mehrfach wiederholt, kommt logischerweise immer das gleiche Ergebnis heraus: Die isolierte DNS wandert immer die gleiche Strecke im Reagenzglas nach unten. Meselson und Stahl haben nun aber einen Weg gefunden, die DNS in den Bakterien zu manipulieren. Sie konnten sie '''schwerer''' machen als normal: Sie ließen die Bakterien auf einem Medium wachsen und sich vermehren, welches '''schwere Stickstoff-Atome''' enthielt (man symbolisiert schweren Stickstoff mit <sup>15</sup>N). Auch die DNS enthält Stickstoff-Atome. Normalerweise leichten Stickstoff (<sup>14</sup>N), weil nur der in der Natur in großen Mengen vorkommt. Nachdem den Bakterien im Versuch aber nur '''schwerer Sticktstoff''' <sup>15</sup>N zur Verfügung stand, mussten sie diesen zum Aufbau ihrer DNS heranziehen. Lässt man die Bakterien lange genug in diesem <sup>15</sup>N-Medium wachsen, enthalten sie nach einiger Zeit nur noch '''"schwere DNS"'''. Zentrifugiert man nun die DNS von diesen Bakterien, stellt man tatsächlich fest, dass diese DNS etwas weiter nach unten gedrückt/gezogen wird als die '''leichte DNS''' der ursprünglichen Bakterien.<br> | |||
[[Datei:Repli_MeselsonStahl_U_N14_N15.jpg|800px]]<br> | |||
<br> | |||
Was bringt das jetzt?<br> | |||
<br> | |||
Noch gar nichts! Man kann erstmal nur unterscheiden, ob die DNS schwer oder leicht ist. Aber der Versuch war noch nicht zu Ende. Meselson und Stahl überführten nun Bakterien, die ihr Leben lang auf Medium mit schwerem Stickstoff <sup>15</sup>N gewachsen waren, auf ein neues Medium, das nur leichten Stickstoff <sup>14</sup>N enthielt. Dort durften die Bakterien genau so lange bleiben, bis sie sich '''einmal geteilt''' hatten, das Erbgut also genau '''einmal verdoppelt''' worden war.<br> Anschließend wurde die DNS wieder isoliert und zentrifugiert.<br> | |||
<br> | |||
Welches Ergebnis sollte man erhalten, bei: | |||
* einer '''konservativen''', | |||
* einer '''semikonservativen''' und | |||
* einer '''dispersen''' | |||
Replikation? | |||
{{Lösung versteckt| | |||
* '''konservativ''': Es sollte eine Bande mit schwerer und eine Bande mit leichter DNS auftauchen. Nachdem beim konservativen Mechanismus die alte (schwere) DNS erhalten bleiben würde und eine neue (leichte) DNS erzeugt werden würde, müsste man diese beiden Banden finden. | |||
* '''semikonservativ''': Es sollte nur eine Bande auftauchen; und zwar zwischen der Stelle, an der normalerweise die schwere DNS auftauchen würde und der Stelle, an der normalerweise die leichte DNS auftauchen würde. Beim semikonservativen Mechanismus wird die alte (schwere) DNS in der Mitte geteilt und jeweils eine Hälfte durch neue Bausteine ergänzt. Das bedeutet, '''alle''' DNS-Stränge sind gleich (halb schwer, halb leicht, also: mittelschwer). | |||
* '''dispers''': Nachdem hier alle möglichen Varianten denkbar sind, sollten viele verschiedene DNS-Varianten auftauchen. Es sollte also keine klare Bande entstehen, sondern eher ein verschwommener Fleck | |||
Das tatsächliche Ergebnis seht ihr hier:<br> | |||
[[Datei:Repli_MeselsonStahl_VErgebnis.jpg|800px]]<br> | |||
Welcher Replikationsmechanismus liegt also vor? | |||
{{Lösung versteckt| | |||
Der semikonservative | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#007">'''Wie funktioniert´s?'''</span> | |||
|Inhalt= | |||
Schaut das Video, welches zeigt, wie die Replikation auf molekularer Ebene abläuft! Beantwortet während des Videos bzw. danach folgende Fragen: <br> | |||
* Was macht die Helicase? | |||
* Wie heißt das Enzym, das aus RNA-Stückchen einen kleinen Primer formt? | |||
* Warum kann der "leading-strand" (Vorwärts-Strang) in einem Stück ergänzt werden, der "lagging-strand" (Rückwärts-Strang) nicht? | |||
* Was ist ein Okazaki-Fragment? | |||
* Was macht die Ligase? | |||
{{#ev:youtube |TNKWgcFPHqw}}<br> | |||
{{Lösung versteckt| | |||
* Sie entdrillt die DNS-Doppelhelix und trennt die beiden Einzelstränge voneinander. | |||
* Primase | |||
* Weil die Polymerase nur in eine Richtung arbeiten kann (am neu entstehenden Strang die Nukleotide von 5´ nach 3´ verknüpfen), auf dem Vorwärtsstrang kann die Polymerase daher der Helicase "hinterher" laufen, auf dem Rückwärtsstrang muss gewartet werden, bis ein neuer Primer erstellt wurde, erst dann kann die Polymerase "von der der Helicase weg" arbeiten. | |||
* Die noch nicht miteinander verknüpften doppelsträngigen Abschnitte auf dem Rückwärtsstrang | |||
* Sie schließt die Lücke im Zucker-Phosphat-Gerüst der neu synthetisierten Einzelstränge. | |||
|Lösung|Lösung ausblenden}}<br> | |||
|Farbe= #007 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFF | |||
|Hintergrund= #DFF | |||
}} | |||
<br> | |||
{{Box-spezial | |||
|Titel=<span style="color:#060">'''Hausaufgabe'''</span> | |||
|Inhalt= | |||
Lesen: Buch, S. 63 - 65 (ohne den blauen Zettelkasten)<br> | |||
Aufgaben: | |||
* Beschreibe das sichtbare Ergebnis, wenn man die Bakterien im Versuch von Meselson und Stahl nicht einen Teilungszyklus lang, sondern zwei Teilungszyklen lang auf Medium mit leichtem Stickstoff wachsen lässt! | |||
* Untermauere Deine Beschreibung durch das Anfertigen einiger aussagekräftiger Skizzen! | |||
|Farbe= #060 | |||
|Rahmen= 0 | |||
|Rahmenfarbe= #DFC | |||
|Hintergrund= #DFC | |||
}} | |||
=== Distanzunterricht, Montag 22.02. === | |||
'''Zu bearbeiten: Am besten heute.'''<br> | '''Zu bearbeiten: Am besten heute.'''<br> | ||
Zeile 37: | Zeile 402: | ||
<br> | <br> | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Mäuse werden mit verschiedenen | Mäuse werden mit verschiedenen Pneumokokken infiziert. Man unterscheidet Pneumokokken vom r-Stamm und vom s-Stamm. Diese unterscheiden sich in ihrem Aussehen unter dem Mikroskop (daher der Name), molekularbiologisch besitzen die Bakterien des s-Stamms eine Schleimhülle um ihre Zellen.<br> | ||
Eine Infektion mit r-Stamm-Pneumokokken ist für die Mäuse unproblematisch, bei der Infektion mit s-Stamm-Pneumokokken sterben sie | Eine Infektion mit r-Stamm-Pneumokokken ist für die Mäuse unproblematisch, bei der Infektion mit s-Stamm-Pneumokokken sterben sie | ||
|Lösung|Lösung ausblenden}}<br> | |Lösung|Lösung ausblenden}}<br> | ||
Zeile 531: | Zeile 896: | ||
** 3.3.4.3 Wahrscheinlichkeitsberechnungen ''als'' [[Spezial:FilePath/3342_S_Wahrsch_Berech_StbmAnalyse_V2.pdf| pdf-Datei]] | ** 3.3.4.3 Wahrscheinlichkeitsberechnungen ''als'' [[Spezial:FilePath/3342_S_Wahrsch_Berech_StbmAnalyse_V2.pdf| pdf-Datei]] | ||
** 3.3.4.4 Der Heterozygotentest ''als'' [[Spezial:FilePath/3344_S_Heterozygotentest.pdf| pdf-Datei]] | ** 3.3.4.4 Der Heterozygotentest ''als'' [[Spezial:FilePath/3344_S_Heterozygotentest.pdf| pdf-Datei]] | ||
** 3.3.4.5 Genommutationen ''als'' [[Spezial:FilePath/3345_Genommutationen_V2.pdf| pdf-Datei]] | ** 3.3.4.5 Genommutationen ''als'' [[Spezial:FilePath/3345_Genommutationen_V2.pdf| pdf-Datei]] | ||
* '''3.4 Molekulargenetik''' | |||
** '''3.4.1 Versuche von Griffith und Avery''' + | |||
** '''3.4.2 Der chemische und strukturelle Aufbau der DNS''' + | |||
** '''3.4.3 Unterschiede zwischen DNS und RNS ''als'' [[Spezial:FilePath/3400_S_DNA_Bau_vs_RNS.pdf| pdf-Datei]] | |||
** '''3.4.4 Die Replikation ''als'' [[Spezial:FilePath/3440_S_DNA_Repli_V3.pdf| pdf-Datei]] | |||
<br> | |||
** '''3.4.5 Die Proteinbiosynthese''' | |||
** 3.4.5.1 Die "Ein-Gen-ein-Enzym-Hypothese" | |||
** 3.4.5.2 Transkription ''als'' [[Spezial:FilePath/3450_S_Vom Gen zum Protein1_Allg_Tskript.pdf| pdf-Datei]] | |||
** 3.4.5.3 Translation ''als'' [[Spezial:FilePath/3450_S_Vom Gen zum Protein2_Translat.pdf| pdf-Datei]] | |||
** 3.4.5.4 Von der Aminosäure zum Protein (Wiederholung) ''als'' [[Spezial:FilePath/3454_S_VonASzumProt.pdf| pdf-Datei]] | |||
** 3.4.5.5 Unterschiede bei der PBS von Pro- und Eukaryoten ''als'' [[Spezial:FilePath/3455_S_U_ProEukaryoten_V3.pdf| pdf-Datei]] | |||
** '''3.4.6 Genregulation (Jacob-Monod-Modell)''' ''als''' [[Spezial:FilePath/3460_S_JacobMonod_V2.pdf| pdf-Datei]] | |||
** '''3.4.7 Genmutationen''' ''als''[[Spezial:FilePath/3470_S_Mutationen.pdf| pdf-Datei]] | |||
** Ein hierzu passendes, bereits ausgefülltes Arbeitsblatt ''als''[[Spezial:FilePath/3480_AB_ML_Mutationen.pdf| pdf-Datei]] | |||
* '''3.5 Gentechnik''' | |||
Beim folgenden Kapitel arbeite ich die Inhalte nicht exakt nach der Reihenfolge ab, wie sie in eurem Buch auftauchen. Zunächst sollen grundlegende Techniken geklärt werden, später einige komplexere Anwendungen. Im Unterricht wird ungefähr folgende Reihenfolge eingehalten: | |||
* S. 112 Restriktionsenzyme und Ligasen (bereits behandelt) | |||
* S. 118 PCR (bereits behandelt) | |||
* S. 114-115 Plasmide und andere Vektoren (teilweise behandelt) | |||
* S. 113 Selektion (noch nicht behandelt) | |||
* S. 116-117 weitere Techniken (noch nicht behandelt) | |||
Hier der Selbstlernkurs von Herrn Mallig, mit dem ihr in die Thematik eingestiegen seid: [http://www.mallig.eduvinet.de/bio/gentecnk/gentek10.htm Hier klicken] <br> | |||
Und hier das Skript (besteht aus 3 Teilen, 2 wurden schon teilweise besprochen) | |||
** '''Gentechnische Werkzeuge und Verfahren, Teil 1''' ''als'' [[Spezial:FilePath/3510_S_Gentech_Werkzeuge.pdf| pdf-Datei]] | |||
** '''Gentechnische Werkzeuge und Verfahren, Teil 2''' ''als'' [[Spezial:FilePath/3512_S_Gentech2_PCR.pdf| pdf-Datei]] | |||
** '''Gentechnische Werkzeuge und Verfahren, Teil 3''' ''als'' [[Spezial:FilePath/3517_S_Gentch3_grGT_Antisense_V2.pdf| pdf-Datei]] | |||
** '''Risiken der Gentechnik und Gegenargumente kurz zusammengefasst''' ''als'' [[Spezial:FilePath/3520_S_Gentch4_Risiken.pdf| pdf-Datei]] | |||
<span style="color:#080">Für das Kapitel '''"Populationswachstum und Biodiversität"''' sind einige Grundlagen aus dem Themengebiet '''"Ökologie"''' der '''10. Jahrgangsstufe''' wichtig. Hier die entsprechenden Hefteinträge: </span><br> | |||
*Teil 1: Grundbegriffe ''als'' [[Spezial:FilePath/Skript_Öko_001.pdf| pdf-Datei]] | |||
*Teil 2: Einflussfaktoren auf Lebewesen + | |||
*Teil 3: Vitalitätskurven ''als'' [[Spezial:FilePath/Skript_Öko_002.pdf| pdf-Datei]] | |||
*Teil 4: Nischenbildung ''als'' [[Spezial:FilePath/Skript_Öko_03.pdf| pdf-Datei]] | |||
<br> | <br> | ||
'''4. Ökologie''' | |||
* 4.1 Populationswachstum ''als ''[[Spezial:FilePath/5000_S_Populationswachstum_V2.pdf| pdf-Datei]] (Buch Q12 - S. 74-77, 79+80) | |||
* Comic (Externer link): [http://www.stuartmcmillen.com/de/comic/die-insel-st-matthew/ Rentiere auf St.-Matthew] | |||
<span style="color:#F00">Neu, ab 28.06., Buch S. </span><br> | |||
* 4.2 Volterra-Regeln ''als'' [[Spezial:FilePath/5200_S_Volterra.pdf|pdf-Datei]] | |||
* 4.3 Anthropogene Einflüsse ''als'' [[Spezial:FilePath/5300_S_Mensch_V2.pdf|pdf-Datei]](Buch Q12 - ab S. 82) | |||
|Farbe= #080 | |Farbe= #080 | ||
Zeile 544: | Zeile 946: | ||
==Lernstoff für Schulaufgabe== | ==Lernstoff für Schulaufgabe== | ||
{{Box-spezial | {{Box-spezial | ||
|Titel=<span style="color:#30F">'''Schulaufgabe 11/1 am 11.01.2021'''</span> | |Titel=<span style="color:#30F">'''ursprüngliche Schulaufgabe 11/1 am 11.01.2021'''</span> | ||
|Inhalt= | |Inhalt= | ||
Ab '''Kapitel 2 "Stoffwechselvorgänge"''' im Skript. '''Seiten im Buch:'''<br> | Ab '''Kapitel 2 "Stoffwechselvorgänge"''' im Skript. '''Seiten im Buch:'''<br> | ||
* S. 32 (Grundlegende Begriffe) | * <s>S. 32 (Grundlegende Begriffe)</s> | ||
* S. 34 Äußere Einflüsse auf die Fotosynthese | * <s>S. 34 Äußere Einflüsse auf die Fotosynthese</s> | ||
* S. 36 - 37 Pflanzen brauchen blaues oder rotes Licht | * <s>S. 36 - 37 Pflanzen brauchen blaues oder rotes Licht</s> | ||
* S. 38 - 39 Zweigeteilte Fotosynthese / Versuche | * <s>S. 38 - 39 Zweigeteilte Fotosynthese / Versuche</s> | ||
* S. 40 - 41 Die lichtabhängige Reaktion | * <s>S. 40 - 41 Die lichtabhängige Reaktion</s> | ||
* S. 42 - 43 Die lichtunabhängige Reaktion | * <s>S. 42 - 43 Die lichtunabhängige Reaktion</s> | ||
* S. 47 Verarbeitung der Glukose | * <s>S. 47 Verarbeitung der Glukose</s> | ||
* S. 48 - 49 Die Atmung | * <s>S. 48 - 49 Die Atmung</s> | ||
* S. 50 - 51 Abbau der Glukose | * <s>S. 50 - 51 Abbau der Glukose</s> | ||
* S. 52 Gärung | * <s>S. 52 Gärung</s> | ||
* S. 53 Stoffwechsel im Überblick | * <s>S. 53 Stoffwechsel im Überblick</s> | ||
* S. 82 Karyogramm des Menschen | * <s>S. 82 Karyogramm des Menschen</s> | ||
* S. 84 - 85 Interphase und Mitose | * <s>S. 84 - 85 Interphase und Mitose</s> | ||
* S. 88 - 89 Befruchtung und Meiose | * S. 88 - 89 Befruchtung und Meiose | ||
* S. 90 Vererbung des Geschlechts | * <s>S. 90 Vererbung des Geschlechts</s> | ||
* S. 94 - 97 Mendelsche Vererbungslehre | * S. 94 - 97 Mendelsche Vererbungslehre | ||
Zeile 570: | Zeile 972: | ||
}}<br> | }}<br> | ||
{{Box-spezial | {{Box-spezial | ||
|Titel=<span style="color:# | |Titel=<span style="color:#30F">'''Neue Schulaufgabe 11/1 am 19.04.2021 (Nachholtermin: 17.05., 14:00 Uhr)'''</span> | ||
|Inhalt= | |Inhalt= | ||
''' | Ab '''Kapitel 3.3.2 "Gregor Mendels Werk'' im Skript. '''Seiten im Buch:'''<br> | ||
''' | * S. 94 – 97 Mendelsche Vererbungslehre | ||
* S. 102 – 104 Stammbaumanalysen, inkl. Blutgruppen | |||
* S. 108 – 109 Therapiemöglichkeiten (ohne Zettelkasten) und genetische Beratung | |||
* S. 92 – 93 Chromosomenaberrationen (Abweichungen von der normalen Anzahl) | |||
** in Verbindung mit "Meiose": S. 88-89 | |||
* S. 60 - 61 Bau der DNA | |||
* S. 63 – 65 Replikation | |||
* S. 66 - 71 Die Proteinbiosynthese | |||
|Farbe= # | |Farbe= #30F | ||
|Rahmen= 0 | |Rahmen= 0 | ||
|Rahmenfarbe= # | |Rahmenfarbe= #DFF | ||
|Hintergrund= # | |Hintergrund= #DFF | ||
}} | }}<br> | ||
<br> |
Aktuelle Version vom 30. Mai 2023, 17:10 Uhr
Termine
Distanzunterricht Online-Einheiten
Distanzunterricht Donnerstag, 06.05.
Distanzunterricht Montag, 26.04.
In der ersten Stunde wurde das Jacob-Monod-Modell zur Regulation von Genaktivität besprochen. Rekapituliert für euch selbst folgende Punkte:
- Warum macht es biologisch Sinn, die Aktivität von Genen zu regulieren?
- Was bedeuten die Begriffe Regulator-Gen, Promotor, Operator, Struktur-Gen, Repressor, Effektor (bzw. Induktor)
- Was ist der Unterschied zwischen Enzyminduktion und Enzymrepression?
Falls ihr noch einmal ein Video dazu schauen wollt, hier ist eins (ca. 5min.):
Distanzunterricht, Montag 08.03: Q11-Corona-Recap
Distanzunterricht, Montag 01.03.
Distanzunterricht, Montag 22.02.
Zu bearbeiten: Am besten heute.
Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel, einen Stift und eine Internetverbindung um Videos zu schauen. Und Ruhe!
Die Bearbeitungszeit sollte ca. 70 Minuten betragen.
Die optionalen Inhalte sind nicht in die Bearbeitungszeit mit eingerechnet.
Hefteintrag ist online.
Distanzunterricht, Montag 15.02.
Zu bearbeiten: Am besten heute.
Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel, Stift, eine Internetverbindung, um Videos zu schauen. Und Ruhe!
Die Bearbeitungszeit sollte unter 90 Minuten liegen.
Die optionalen Inhalte sind nicht in die Bearbeitungszeit mit einberechnet.
Distanzunterricht Montag, 08.02.
- Zu bearbeiten: Am besten heute. Ihr könnt gerne zusammen an dieser Einheit arbeiten, indem ihr euch über ein Kommunikations-Tool eurer Wahl Kontakt aufnehmt.
- Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel und einen Stift.
- Die Bearbeitungszeit wird 90 Minuten sicher nicht überschreiten.
- Die optionalen Inhalte sind jedoch nicht in die Bearbeitungszeit mit eingerechnet.
Ende der ersten Stunde. Kurze Pause :) - Die zweite Hälfte wird kürzer.
Hefteinträge
Lernstoff für Schulaufgabe