6e Mathematik: Unterschied zwischen den Versionen
Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(11 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 78: | Zeile 78: | ||
{{Lösung versteckt |1= <math>4=\frac{4}{1} </math> |2=Aufdecken|3=Verbergen}} | {{Lösung versteckt |1= <math>4=\frac{4}{1} </math> |2=Aufdecken|3=Verbergen}} | ||
*Damit lässt sich die Aufgabe <math>{2 \over 3} : 4 </math> um einen hilfreichen Zwischenschritt ergänzen | *Damit lässt sich die Aufgabe <math>{2 \over 3} : 4 </math> um einen hilfreichen Zwischenschritt ergänzen.... Wie könnte dieser lauten? | ||
{{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}</math> |2=Aufdecken|3=Verbergen}} | {{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}</math> |2=Aufdecken|3=Verbergen}} | ||
*'''Feststellung:''' Ob man einen Bruch mit <math> 1 \over 4 </math> multipliziert oder durch <math> 4 \over 1 </math> dividiert, das Ergebnis ist identisch. | *'''Feststellung:''' Ob man einen Bruch mit <math> 1 \over 4 </math> multipliziert oder durch <math> 4 \over 1 </math> dividiert, das Ergebnis ist identisch. Was heißt dies nun konkret für dieser Berechnung der Aufgabe? | ||
{{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}= \frac{2}{3}\cdot \frac{1}{4} = \frac{1}{6}</math>|2=Aufdecken|3=Verbergen}} | {{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}= \frac{2}{3}\cdot \frac{1}{4} = \frac{1}{6}</math>|2=Aufdecken|3=Verbergen}} | ||
*'''Notiere nun bitte das Folgende in dein Schulheft:''' | *'''Notiere nun bitte das Folgende in dein Schulheft:''' | ||
{{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}= \frac{2}{3}\cdot \frac{1}{4} = \frac{1}{6}</math> <br> '''Anmerkung:''' Steht von einem Bruch die Zahl des Zählers im Nenner eines anderen | {{Lösung versteckt |1= <math>\frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1}= \frac{2}{3}\cdot \frac{1}{4} = \frac{1}{6}</math> <br> '''Anmerkung:''' Steht von einem Bruch die Zahl des Zählers im Nenner eines anderen Bruches und gleichzeitig die Zahl des Nenners im Zähler des anderen Bruches, so nennt man diesen Bruch seinen "Kehrbruch" oder auch den "Kehrwert des Bruches", zu <math> 4 \over 1 </math> ist <math> 1 \over 4 </math> der Kehrwert des Bruches - man stellt den Bruch praktisch "auf den Kopf".|2=Aufdecken|3=Verbergen}} | ||
*Vielleicht hast du bereits eine Idee, wie man Brüche dividiert...Schön ist, dass dir hier dein Wissen zur Multiplikation von Brüchen extrem behilflich sein wird. Schau dir nun bitte das folgende Video an, um deine Vermutung zu bekräftigen! '''Stoppe das Video an der Stelle <math>\frac{7}{12} : \frac{3} | *Vielleicht hast du bereits eine Idee, wie man Brüche dividiert...Schön ist, dass dir hier dein Wissen zur Multiplikation von Brüchen extrem behilflich sein wird. Schau dir nun bitte das folgende Video an, um deine Vermutung zu bekräftigen! '''Stoppe das Video an der Stelle <math>\frac{7}{12} : \frac{3}{16} </math> und berechne die Aufgabe zunächst selbst im Heft! Starte das Video wieder und vergleiche nun mit deiner Lösung.''' <br> | ||
|3= Unterrichtsidee}} | |3= Unterrichtsidee}} | ||
Zeile 93: | Zeile 93: | ||
{{Box| Dividieren von Brüchen: |{{#ev:youtube|RUWu_VBRU1U|600|center}}| Hervorhebung1}} | {{Box| Dividieren von Brüchen: |{{#ev:youtube|RUWu_VBRU1U|600|center}}| Hervorhebung1}} | ||
{{Box|1= Merke: | 2= '''Regel über die Division durch einen Bruch''' <br> Man dividiert durch einen Bruch, | {{Box|1= Merke: | 2= Schreibe nun bitte folgenden Merksatz ins Schulheft: | ||
{{Lösung versteckt |1= '''Regel über die Division durch einen Bruch:''' <br> Man dividiert durch einen Bruch, indem man mit dem Kehrwert des Bruches multipliziert. Den Kehrwert eines Bruches erhält man durch Vertauschen von Zähler und Nenner.|2=Aufdecken|3=Verbergen}} | |||
|3= Merksatz}} | |3= Merksatz}} | ||
{{Box|1= Übung:| 2= Bearbeite bitte folgende Aufgaben im Schulheft: B. S. 96/ 8 m), n), o), p), r), t) <br> '''WICHTIG:''' Kürzen ist nur erlaubt, wenn im Zähler und auch im Nenner Produkte stehen bzw. Zähler und Nenner in Faktoren zerlegt werden können. Bei einem Quotienten, bei einer Summe, bei einer Differenz darf man | {{Box|1= Übung:| 2= Bearbeite bitte folgende Aufgaben im Schulheft: B. S. 96/ 8 m), n), o), p), r), t) <br> '''WICHTIG:''' Kürzen ist nur erlaubt, wenn im Zähler und auch im Nenner Produkte stehen bzw. Zähler und Nenner in Faktoren zerlegt werden können. Bei einem Quotienten, bei einer Summe, bei einer Differenz darf man nie zu Beginn kürzen! | ||
{{Lösung versteckt |1= [[Datei:Lösungsvorschlag 96-8 m, n, o, p, r, t.jpg|Lösungsvorschlag 96-8 m]] |2= Lösung Aufgabe | {{Lösung versteckt |1= [[Datei:Lösungsvorschlag 96-8 m, n, o, p, r, t.jpg|Lösungsvorschlag 96-8 m]] |2= Lösung Aufgabe 8 m), n), o), p), r), t) anzeigen | 3= Lösung verbergen}} |3= Üben}} |
Aktuelle Version vom 16. Januar 2021, 20:01 Uhr
13.01.2021
Das Multiplizieren von Brüchen in gemischter Schreibweise haben wir ja gerade in der Videokonferenz besprochen, schreibe nun noch den folgenden Merksatz in dein Schulheft:
14.01.2021