Mathematik 12/Geraden und Ebenen im Raum: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 167: | Zeile 167: | ||
=====<u>Abstand paralleler Ebenen</u>===== | =====<u>Abstand paralleler Ebenen</u>===== | ||
Da parallele Ebenen überall denselben Abstand haben, lässt sich dieses Problem auf das Problem Abstand Punkt-Ebene zurückführen. Wähle also einen Punkt der Ebene | Da parallele Ebenen überall denselben Abstand haben, lässt sich dieses Problem auf das Problem Abstand Punkt-Ebene zurückführen. Wähle also einen Punkt der Ebene E<sub>1</sub> aus (z.B. Aufpunkt) und berechne den Abstand zur Ebene E<sub>2</sub>. | ||
====Material aus dem Unterricht==== | ====Material aus dem Unterricht==== | ||
*[[Mathematik 12/Geraden und Ebenen im Raum/Übung Ebenen aufstellen Lösungen|Lösungen zum AB "Übung - Ebenen aufstellen"]] | |||
*[[Mathematik 12/Geraden und Ebenen im Raum/Übung Lage Gerade-Ebene Lösungen|Lösungen zum AB "Übung - Lagebeziehung Gerade-Ebene"]] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/Übung_Abstandsprobleme Übung Abstandsprobleme] | |||
*[[Mathematik 12/Geraden und Ebenen im Raum/Abitur 2016 Geometrie 1 Lösungen|Abitur 2016 Geometrie 1 Lösungen]] | |||
'''Lösungen zu Aufgaben aus dem Buch''' | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite134_2b_3 Seite 134/2b und 3] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite135_11 Seite 135/11] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite143_6 Seite 143/6] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite143_9 Seite 143/9] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite144_15 Seite 144/15] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite145_19 Seite 145/19] | |||
*[http://rmg.zum.de/wiki/Q12_Mathematik/LS12_Seite145_21 Seite 145/21] | |||
[[Kategorie:Mathematik 12]] [[Kategorie:Geraden und Ebenen im Raum]] | |||
: | |||
Aktuelle Version vom 28. Februar 2020, 21:33 Uhr
Geometrie
Hier findet ihr eine Mindmap mit dem Überblick über den kompletten Geometrie-Stoff. Datei:Geo Abiturzusammenfassung mind map.pdf
Grundlagen Geometrie
Geraden
Gerade aufstellen
Unterschied Orts-& Richungsvektor
Punktprobe
Spurpunkte
Besondere Lage
Ebenen
Lage im Raum:
Ebene aufstellen - Parameterform
Ebene aufstellen bei verschiedenen Angaben:
Wofür brauche ich den Normalenvektor?
Normalenform aufstellen
Grundidee:
Im Video wird das Symbol * für das Skalarprodukt verwendet, wir benutzen hier immer den „Kringel“ ° .
Beispielaufgabe
Hier wird auch wieder für das Skalarpodukt das *Symbol verwendet.
weiterhin ist es sinnvoll den Normalenvektor zu kürzen.
Umwandeln der verschiedenen Formen
Lagebeziehungen
Lagebeziehung Geraden
Lagebeziehung Ebenen
Für die Lage einer Ebene zu einer Ebene gibt es 3 Möglichkeiten: Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich.
Für die Untersuchung der Lagebeziehungen gibt es viele Möglichkeiten, je nachdem in welcher Form die Ebenen gegeben sind.
Generell ist es sinnvoll zunächst die Normalenvektoren der Ebenen zu betrachten. Ist eine Ebene in Parameterform gegeben, muss dafür zunächst der Normalenvektor berechnet werden. Sind die beiden Normalenvektoren linear abhängig sind die Ebenen parallel oder identisch. Dies kann mit einer Punktprobe überprüft werden. Sind die Normalenvektorn linear unabhängig, so schneiden sich die Ebenen in einer Schnittgerade. (siehe Spezialfall)
Sind die beiden Ebenen in Parameterform gegeben, ist das Vorgehen wie folgt:
Spezialfall: Schnittgerade berechnen
Beide Ebenen in Normalenform
Normalenform und Parameterform
Lagebeziehung Ebene - Gerade
Übersicht über verschiedene Möglichkeiten
Beispielaufgabe
Abstandsprobleme
Abstand Punkt - Punkt
Abstand Punkt - Gerade
hier gibt es generell zwei Möglichkeiten:
"Mal" heißt hier Skalarpodukt berechnen
Variante 2: Hilfsebene
Abstand paralleler Geraden
Parallele Geraden haben überall denselben Abstand. Daher lässt sich das Problem auf das Problem Abstand Punkt-Gerade zurückführen. Berechne daher den Abstand eines Punktes von g1 (z.B. Aufpunkt) zur Geraden g2.
Abstand windschiefer Geraden
Dann Abstandsberechnung wie bekannt.
Beispielaufgabe
Abstand Punkt - Ebene
Hier gibt es auch zwei Möglichkeiten:
Variante 1: HNF verwenden
Achtung: Hier fehlt immer wieder bei der Ebenengleichung =0. Bei der Berechnung des Abstands bitte Betragsstriche setzen.
Variante 2: Lotgerade aufstellen
Abstand paralleler Ebenen
Da parallele Ebenen überall denselben Abstand haben, lässt sich dieses Problem auf das Problem Abstand Punkt-Ebene zurückführen. Wähle also einen Punkt der Ebene E1 aus (z.B. Aufpunkt) und berechne den Abstand zur Ebene E2.
Material aus dem Unterricht
- Lösungen zum AB "Übung - Ebenen aufstellen"
- Lösungen zum AB "Übung - Lagebeziehung Gerade-Ebene"
- Übung Abstandsprobleme
- Abitur 2016 Geometrie 1 Lösungen
Lösungen zu Aufgaben aus dem Buch