6e Lernen zu Hause: Brüche und Dezimalbrüche: Unterschied zwischen den Versionen
Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(28 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 379: | Zeile 379: | ||
|3= Üben}} | |||
==25.02.2021== | |||
{{Box |1= Übung: |2= Bevor du startest wiederhole bitte für dich die Formel zur Berechnung des Flächeninhalts eines Parallelogramms und auch die Formel zur Berechnung seines Umfangs. Solltest du heute dabei feststellen, dass etwas unklar ist, dann schau dir bitte das entsprechende Erklärvideo an. Danke! <br> Wenn alles klar ist, dann geht's los - heute zunächst noch einmal eine Aufgabe zu Parallelogrammen... <br> | |||
'''Bearbeite bitte im Buch S. 141/ 10 c) und d)!''' <br> Bei dieser Aufgabe musst du zunächst die Parallelogramme in ein Koordinatensystem zeichnen, falls du dich nicht mehr so genau daran erinnern kannst, wie man einen Punkt in ein Koordinatensystem einträgt, hilft die das nach der Lösung angefügte Video weiter... Schau dir dieses dann bitte an, bevor du mit der Lösung der Aufgaben beginnst. <br> | |||
{{Lösung versteckt|1=[[Datei:141-10c.png|141-10c.png|450px]]A = a • h<sub>a</sub> = 4 cm • 4 cm = 16 cm² |2=10c Aufdecken|3=Verbergen}} | |||
{{Lösung versteckt|1=[[Datei:141-10d.png|141-10d.png|450px]]A= a • h<sub>a</sub> = 4,5 cm • 4 cm = 18 cm² |2=10d Aufdecken|3=Verbergen}} | |||
|3= Üben}} | |||
{{Box| Falls du Hilfe benötigst - Punkte im Koordinatensystem: |{{#ev:youtube|watch?v=3x9R2uFSMds|600|center}} | Hervorhebung1}} | |||
{{Box|1= Zur Erinnerung: |2= Ein Dreieck hat drei Eckpunkte, welche man meistens mit A, B und C bezeichnet. <br> Weitere Bezeichnungen am Dreieck: <br> Winkel <math>\alpha</math> liegt am Eckpunkt A, gegenüber vom Punkt A liegt die Seite a, Winkel <math>\beta</math> liegt am Eckpunkt B, gegenüber von Punkt B liegt die Seite b und Winkel <math>\gamma</math> liegt am Eckpunkt C, gegenüber vom Punkt C liegt die Seite c. <br> Mit folgendem Link kannst du dir die Beschreibung von eben bezüglich der Bezeichnungen am Dreieck noch einmal bildhaft verdeutlichen: [https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/456px-Dreieck.svg.png Notationen am Dreieck] | 3= Arbeitsmethode}} | |||
{{Box|1= Idee: |2= Herleitung der Formel zur Berechnung des '''Flächeninhalts A eines Dreiecks'''. <br> | |||
Um den Flächeninhalt eines Dreiecks bestimmen zu können, erinnert man sich zunächst an die Berechnung des Flächeninhalts eines Rechtecks <math>A= a \cdot b</math>, a beschreibt die Länge und b die Breite des Rechtecks. <br> Vielleicht hast du auch schon eine Idee, wie man den Flächeninhalt eines Dreiecks mit dem Wissen zur Berechnung des Flächeninhalts eines Rechtecks bestimmen kann? <br> Bevor du dir den entsprechenden Merksatz in dein Heft notieren wirst, schau dir im Folgenden Schritt für Schritt eine der Möglichkeiten an, wie der Flächeninhalt eines Dreiecks bestimmt werden kann. <br> Am Montag wirst du noch eine andere Idee kennen lernen, aber das Ergebnis ist dasselbe wie heute, die Formel zur Berechnung des Flächeninhalts eines Dreiecks bleibt gleich... <br> Falls du nur "GeoGebra" lesen kannst, aktualisiere bitte die Internetseite - z.B. indem du "F5" auf der Tastatur drückst, dann sollte es normalerweise klappen... | |||
<ggb_applet id="tT6Yj7Dg" width="800" height="450" border="888888" /> | |||
<br> | |||
<br> | |||
|3= Unterrichtsidee}} | |||
{{Box|1= Wichtig: |2= Zur Berechnung des Flächeninhalts eines Dreiecks muss man die Höhen im Dreieck kennen, zu jeder Seite im Dreieck gibt es eine zugehörige Höhe, dies ist der Abstand eines Eckpunktes von seiner gegenüberliegenden Seite. Der Abstand ist die kürzeste Strecke vom Eckpunkt aus auf die Seite und steht deswegen auf der gegenüberliegenden Seite senkrecht... Insgesamt gibt es also drei Höhen im Dreieck.... diese können aber auch außerhalb des Dreiecks liegen: | |||
| 3= Unterrichtsidee}} | |||
{{Box| Höhen im Dreieck: |{{#ev:youtube|watch?v=nRJnWvPuuuQ|600|center}} | Hervorhebung1}} | |||
{{Box|Merke:|Schreibe nun zunächst '''Flächeninhalt eines Dreiecks''' als Überschrift in dein Heft und notiere dir anschließend den Merksatz zu Höhen im Dreieck! <br> Zeichne ein spitzwinkliges Dreieck, in dem du alle drei Höhen, wie im vorgehenden Erklärvideo gesehen einzeichnest. <br> Falls du nun merkst, dass beim Zeichnen noch etwas unklar ist, dann schau dir einfach nochmal die entsprechende Stelle im Video an oder melde dich bei mir in der Videosprechstunde... | |||
{{Lösung versteckt|1= | |||
'''Höhen im Dreieck:'''<br> | |||
Unter den Höhen eines Dreiecks versteht man die Abstände der Eckpunkte von den gegenüberliegenden Seiten bzw. deren Verlängerungen (im Falle eines stumpfwinkligen Dreiecks). <br> Ein Dreieck hat drei Höhen. <br> | |||
''Beispiel:'' h<sub>c</sub> ist der Abstand des Eckpunktes C von der Seite <math> \overline{AB} </math> bzw. deren Verlängerung. | |||
<br> | |||
|2=Aufdecken|3=Verbergen}} | |||
|3=Merksatz}} | |||
{{Box|Merke: |Vervollständige deinen Hefteintrag mit dem folgenden Merksatz! <br> | |||
{{Lösung versteckt|1= | |||
'''Flächeninhalt eines Dreiecks'''<br> | |||
Der Flächeninhalt A eines Dreiecks ist gleich die Hälfte des Produkts aus der Seitenlänge und der '''zugehörigen''' Höhe.<br> | |||
'''<math> A = \frac {1}{2} \cdot a \cdot h_a </math> ''' oder '''<math> A = \frac {1}{2} \cdot b \cdot h_b </math>''' oder '''<math> A = \frac {1}{2} \cdot c \cdot h_c </math>'''; <br> '''Allgemein gilt:''' '''<math> A = \frac {1}{2} \cdot g \cdot h = \frac {g\cdot h}{2} = (g\cdot h) \div2 </math>''', der Flächeninhalt ist die Hälfte des Produkts aus einer Seite (Grundseite g) und zugehöriger Höhe (h).<br> | |||
Folgende Anmerkung ist nur eine Anmerkung und nicht Teil des Hefteintrags... <br> | |||
Anmerkung: Unter "allgemein gilt" konntest du der Vollständigkeit halber auch andere Notationsvarianten für den Flächeninhalt eines Dreiecks kennen lernen. Bei der Bearbeitung einer Aufgabe verwendet man meist die Formel <math> A = \frac {1}{2} \cdot g \cdot h </math> als Ansatz, die anderen Formeln helfen im weiteren Verlauf der Rechnung dabei richtig zu berechnen... | |||
|2=Aufdecken |3= Verbergen}} | |||
|3=Merksatz}} | |||
{{Box |1= Übung und Hausaufgabe: |2= Ein kleiner Test zum Verständnis des Flächeninhalts des Dreiecks... Bearbeite B. S. 135/ 4a), b) und d)! Überlege dir jeweils genau, was ist die Seite des Dreiecks, wie lang ist diese und was die zugehörige Höhe. Vergleiche im Anschluss bitte deine Lösung mit meinem Lösungsvorschlag. <br> '''Erinnerung:''' Notiere dir stets, was gegeben ist und schreibe auch immer die Formel auf, die du zur Bearbeitung der Aufgabe verwendest. | |||
{{Lösung versteckt |1= '''Lösung der Aufgaben:''' <br> | |||
'''a)''' <br> | |||
g = 9 cm und h = 4 cm <br> | |||
<math> A = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot 9 cm \cdot 4 cm = \frac{1}{2} \cdot (9 cm \cdot 4 cm) = \frac {1}{2} \cdot 36 cm^2 = 18 cm^2 </math> <br> | |||
'''b)''' <br> | |||
g = 6 cm und h = 4 cm oder aber auch g = 4 cm und h = 6 cm, denn zwei Seiten des Dreiecks stehen aufeinander senkrecht. Damit ist die eine Seite die Höhe zu der Seite, auf der sie senkrecht steht oder eben umgekehrt...<br> | |||
<math> A = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot 6 cm \cdot 4 cm = \frac{1}{2} \cdot (6 cm \cdot 4 cm) = \frac {1}{2} \cdot 24 cm^2 = 12 cm^2 </math> <br> | |||
'''d)''' <br> | |||
ACHTUNG: g = 3,5 cm und h = 2,7 cm <br> | |||
<math> A = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot 3,5 cm \cdot 2,7 cm = \frac{1}{2} \cdot (3,5 cm \cdot 2,7 cm) = \frac {1}{2} \cdot 9,45 cm^2 = 9,45 cm^2 \div 2= 4,725 cm^2 </math> <br> Anmerkung: "<math> \frac{1}{2} \cdot </math>" entspricht "geteilt durch 2", was manchmal leichter im Kopf zu berechnen ist.... Man bestimmt ja letztendlich die Hälfte...<br> | |||
|2= Lösung der Aufgabe anzeigen | 3= Lösung verbergen}} <br> | |||
|3= Üben}} | |3= Üben}} |
Aktuelle Version vom 27. Februar 2021, 19:05 Uhr
15.02.2021
17.02.2021
18.02.2021
22.02.2021
24.02.2021
25.02.2021