6e Lernen zu Hause: Brüche und Dezimalbrüche: Unterschied zwischen den Versionen
Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 395: | Zeile 395: | ||
{{Box| Punkte im Koordinatensystem: |{{#ev:youtube|watch?v=3x9R2uFSMds|600|center}} | Hervorhebung1}} | {{Box| Punkte im Koordinatensystem: |{{#ev:youtube|watch?v=3x9R2uFSMds|600|center}} | Hervorhebung1}} | ||
{{Box|1= Idee: |2= Herleitung der Formel zur Berechnung des '''Flächeninhalts A eines Dreiecks'''. Um den Flächeninhalt eines Dreiecks bestimmen zu können, erinnert man sich zunächst an die Berechnung des Flächeninhalts eines Rechtecks <math>A= a \cdot b</math>, a beschreibt die Länge und b die Breite des Rechtecks. | {{Box|1= Zur Erinnerung: |2= Ein Dreieck hat drei Eckpunkte, welche man meistens mit A, B und C bezeichnet. <br> Weitere Bezeichnungen am Dreieck: <br> Winkel <math>\alpha</math> liegt am Eckpunkt A, gegenüber vom Punkt A liegt die Seite a, Winkel <math>\beta</math> liegt am Eckpunkt B, gegenüber von Punkt B liegt die Seite b und Winkel <math>\gamma</math> liegt am Eckpunkt C, gegenüber vom Punkt C liegt die Seite c. <br> Mit folgendem Link kannst du dir die Beschreibung von eben bezüglich der Bezeichnungen am Dreieck noch einmal bildhaft verdeutlichen: [https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/456px-Dreieck.svg.png Notationen am Dreieck] | 3= Arbeitsmethode}} | ||
{{Box|1= Idee: |2= Herleitung der Formel zur Berechnung des '''Flächeninhalts A eines Dreiecks'''. <br> | |||
Um den Flächeninhalt eines Dreiecks bestimmen zu können, erinnert man sich zunächst an die Berechnung des Flächeninhalts eines Rechtecks <math>A= a \cdot b</math>, a beschreibt die Länge und b die Breite des Rechtecks. <br> Vielleicht hast du auch schon eine Idee, wie man den Flächeninhalt eines Dreiecks mit dem Wissen zur Berechnung des Flächeninhalts eines Rechtecks bestimmen kann? <br> Bevor du dir den entsprechenden Merksatz in dein Heft notieren wirst, schau dir im Folgenden Schritt für Schritt eine der Möglichkeiten an, wie der Flächeninhalt eines Dreiecks bestimmt werden kann. <br> Hattest du vielleicht eine andere Idee? Schreib mir diese gerne via Schulmanager, wenn du magst. | |||
<ggb_applet id="tT6Yj7Dg" width="800" height="450" border="888888" /> | <ggb_applet id="tT6Yj7Dg" width="800" height="450" border="888888" /> | ||
Zeile 402: | Zeile 406: | ||
|3= Unterrichtsidee}} | |3= Unterrichtsidee}} | ||
{{Box|1= Wichtig: |2= Zur Berechnung des Flächeninhalts eines Dreiecks muss man die Höhen im Dreieck kennen, zu jeder Seite im Dreieck gibt es eine zugehörige Höhe, dies ist der Abstand eines Eckpunktes von seiner gegenüberliegenden Seite. Der Abstand ist die kürzeste Strecke vom Eckpunkt aus auf die Seite und steht deswegen auf der gegenüberliegenden Seite senkrecht... Insgesamt gibt es also drei Höhen im Dreieck.... diese können aber auch außerhalb des Dreiecks liegen: | |||
| 3= Herhebung1}} | |||
{{Box| Höhen im Dreieck: |{{#ev:youtube|watch?v=nRJnWvPuuuQ|600|center}} | Hervorhebung1}} | |||
{{Box|Merke:| Notiere nun zunächst '''Flächeninhalt eines Dreiecks''' als Überschrift in dein Heft und notiere dir anschließend den Merksatz zu Höhen im Dreieck in dein Heft! Zeichne ein spitzwinkliges Dreieck, in dem du alle drei Höhen, wie im vorgehenden Erklärvideo gesehen einzeichnest. Falls du nun merkst, dass beim Zeichnen noch etwas unklar ist, dann schau dir einfach nochmal die entsprechende Stelle im Video an oder melde dich bei mir in der Videosprechstunde... | |||
{{Lösung versteckt|1= | |||
'''Höhen im Dreieck:'''<br> | |||
Unter den Höhen eines Dreiecks versteht man die Abstände der Eckpunkte von den gegenüberliegenden Seiten bzw. deren Verlängerungen (im Falle eines stumpfwinkligen Dreiecks). Ein Dreieck hat drei Höhen. <br> | |||
''Beispiel:'' h_c ist der Abstand des Eckpunktes C von der Seite <math> \overline{AB} </math> bzw. deren Verlängerung. | |||
<br> | |||
|2=Aufdecken|3=Verbergen}} | |||
|3=Merksatz}} | |||
{{Box|Merke: | Vervollständige deinen Hefteintrag mit dem folgenden Merksatz! <br> | |||
{{Lösung versteckt|1= | |||
'''Flächeninhalt eines Dreiecks'''<br> | |||
Der Flächeninhalt A eines Dreiecks mit der Länge g einer Seite (Grundseite) und der zugehörigen Höhe h gilt: <br> | |||
'''<math> A = a \cdot h_a </math> <sub>a</sub>''' oder '''A = b∙h<sub>b</sub>'''; allgemein gilt: '''A = g∙h''', der Flächeninhalt ist das Produkt aus einer Seite (Grundseite g) und zugehöriger Höhe (h).<br> | |||
|2=Aufdecken |3= Verbergen}} | |||
|3=Merksatz}} | |||
{{Box|1= Hausaufgabe: |2= Hier kannst du testen, ob du die Berechnung des Flächeninhalts eines Dreiecks verstanden hast. Für mindestens drei Dreiecke solltest du dies heute noch testen! | |||
<ggb_applet id="VgryttKX" width="800" height="450" border="888888" /> | |||
<br> | |||
<br> | |||
|3= Unterrichtsidee}} |
Version vom 21. Februar 2021, 13:37 Uhr
15.02.2021
17.02.2021
18.02.2021
22.02.2021
24.02.2021
25.02.2021