6e Lernen zu Hause: Dezimalbrüchen: Unterschied zwischen den Versionen
Aus RMG-Wiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 228: | Zeile 228: | ||
|3= Merksatz}} | |3= Merksatz}} | ||
{{Box |1= Übung: |2= Bearbeite bitte im Buch S. 125/ 3) und 5)! <br> Vergleiche anschließend deine Lösung mit der von mir - hake richtige Lösungen ab und verbessere falsche! <br> | |||
{{Lösung versteckt |1= Lösung der Aufgaben: <br> | |||
Allgemeine Info zu Aufgabe 3: <br> In der Regel ist das Addieren und Subtrahieren von Dezimalbrüchen besser. <br> In b), c), g), h) und j) kann man die Brüche nicht in endliche Dezimalbrüche umwandeln. Daher rechnet man hier mit Brüchen! | |||
'''a)''' <br> | |||
<math>0,2 + 0,75 = 0,95 </math> oder aber auch: <br> | |||
<math>\frac {2}{10} + \frac {3}{4} = \frac {19}{20}</math> <br> | |||
'''b)''' <br> | |||
<math>0,2 + \frac{2}{3} = \frac{2}{10} + \frac {2}{3} = \frac{6}{30} + \frac {20}{30} = \frac{26}{30} = \frac{13}{15} </math> <br> | |||
'''c)''' <br> | |||
<math>0,75 - \frac{5}{12} = \frac{3}{4} - \frac{5}{12} = \frac{9}{12} - \frac{5}{12} = \frac{4}{12} = \frac{1}{3} </math> <br> | |||
'''d)''' <br> | |||
<math> 0,75 - \frac{1}{4} = 0,75 - 0,25 = 0,5 </math> oder aber auch: <br> | |||
<math> 0,75 - \frac{1}{4} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4}= \frac {1}{2} </math> <br> | |||
'''e)''' <br> | |||
<math> \frac{1}{8} + 0,75 = 0,125 + 0,75 = 0,875 </math> oder aber auch: <br> | |||
<math> \frac{1}{8} + 0,75 = \frac {1}{8} + \frac{3}{4} = \frac{1}{8} + \frac{6}{8} = \frac{7}{8} </math> <br> | |||
'''f)''' <br> | |||
<math> \frac{1}{8} + 0,7 = 0,125 + 0,7 = 0,875 </math> oder aber auch: <br> | |||
<math> \frac{1}{8} + 0,7 = \frac{1}{8} + \frac{7}{10} = \frac{5}{40} + \frac{28}{40} = \frac{33}{40} </math> <br> | |||
'''g)''' <br> | |||
<math> \frac{1}{3} + 0,3 = \frac{1}{3} + \frac{3}{10} = \frac{10}{30} + \frac{9}{30} = \frac{19}{30} </math> <br> | |||
'''h)''' <br> | |||
<math> 0,7 + \frac{1}{15} = \frac{7}{10} + \frac{1}{15} = \frac{21}{30} + \frac{2}{30} = \frac{23}{30} </math> <br> | |||
'''i)''' <br> | |||
<math> 0,9 -\frac{3}{25}= 0,9 - \frac{12}{100} = 0,9 - 0,12 = 0,78 </math> oder aber auch: <br> | |||
<math> 0,9 - \frac{3}{25} = \frac{9}{10} - \frac{3}{25} = \frac{45}{50} - \frac{6}{50} = \frac{39}{50} </math> <br> | |||
'''j)''' <br> | |||
<math> \frac{7}{9} - 0,3 = \frac{7}{9} - \frac{3}{10} = \frac{70}{90} - \frac{27}{90} = \frac{43}{90} </math> | |||
|2= Lösung der Aufgabe 3 anzeigen | 3= Lösung verbergen}} <br> | |||
{{Lösung versteckt |1= Lösung der Aufgaben: <br> | |||
'''a)''' <br> | |||
<math>0,75- \frac {1}{4} = \frac {3}{4} - \frac{1}{4}= \frac{2}{4} = \frac{1}{2} </math> oder aber auch: <br> | |||
<math>0,75- \frac {1}{4} = 0,75 - 0,25 = 0,5 </math> <br> Hier kannst du vollkommen frei entscheiden, ob du lieber mit Brüchen oder lieber mit Dezimalbrüchen rechnen möchtest, es gibt hierbei keinen großen Schwierigkeitsunterschied. Beide Varianten führen gleich schnell ans Ziel. <br> | |||
'''b)''' <br> | |||
<math>\frac{1}{8} \cdot 0,75 = \frac{1}{8} \cdot \frac {3}{4} = \frac{3}{32} </math> oder aber auch: <br> <math>\frac{1}{8} \cdot 0,75 = 0,125 \cdot 0,75 = 0,09375 </math> <br> Hier würde ich stets das Umrechnen in Brüche wählen, das geht bei dieser Aufgabe bedeutend schneller. <br> | |||
Beim Umrechnen in Dezimalbrüche braucht man zur Berechnung des Endergebnisses erst noch einen Nebenrechnung, diese spart man sich bei der Berechnung mit Brüchen, wodurch sicher Fehler vermieden werden können! | |||
|2= Lösung der Aufgabe 5 anzeigen | 3= Lösung verbergen}} <br> | |||
|3= Übung}} |
Version vom 8. Februar 2021, 09:03 Uhr
08.02.2021
10.02.2021
11.02.2021