Mathematik 5/Teilbarkeit: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 148: | Zeile 148: | ||
===''' Zusammengesetzte Teilbarkeit'''=== | |||
Schau dir das folgende Video an: | Schau dir das folgende Video an: | ||
Zeile 183: | Zeile 183: | ||
|Download}} | |Download}} | ||
===Gibt es auch eine Teilbarkeitsregeln für die 7?=== | |||
{{Box|weitere Teilbarkeitsregeln| | |||
Für die Zahlen 2, 3 und 5 sind die Teilbarkeitsregeln sehr einfach. Aus ihnen kann man weitere Teilbarkeitsregeln für z.B. die 6 oder die 9 ableiten. Aber was ist mit z.B. mit der Teilbarkeit durch 7 oder durch 11? Es gibt sie, aber sie ist nicht mehr ganz so einfach. Informiere dich hier im Internet über die Teilbarkeitsregel für die Zahlen 7 und 11. Probiere den Weg an einem Beispiel aus und schicke mir ein Foto davon. Die schönste Erklärung kommt hier ins Wiki:-). | |||
|Kurzinfo}} |
Version vom 21. Januar 2021, 04:56 Uhr
Die Teilbarkeitsregeln
1. Die Endziffernregeln
2. Die Quersummenregeln
1. Die Endziffernregeln
Wie das Wort besagt geht es um die letzte Ziffer einer Zahl. Diese Ziffer bestimmt die jeweilige Teilbarkeit. Folgendes Video erklärt dir (nochmal), wie es geht.
Korrigiere deine Lösungen mit deinem liebsten Lieblingskorrekturstift. (1) Teilbar durch 2:
- 348, 572, 700, 1.250, 5.216, 17.700, 124.110
- 780, 1.770,
- 1.000, 2.552, 2.936, 35.296, 701.234
(2) Teilbar durch 5:
- 700, 1.250, 2.175, 8.415, 17.700, 124.110
- 375, 855, 780, 1.770, 7.025, 324.805
- 725, 1.000, 3.555, 3.175
(3) Teilbar durch 10:
- 700, 1250, 17.700, 124.110
- 780, 1.770
- 1.000
2. Die Quersummenregeln
Sie dir zunächst das Video an.
Beispiele:
1728 ist durch 3 und 9 teilbar, da die Quersumme 1 + 7 + 2 + 8 = 18 durch 3 und 9 teilbar ist.
7467 ist durch 3, aber nicht durch 9 teilbar, da die Quersumme 7 + 4 + 6 + 7 = 24 durch 3, aber nicht durch 9 teilbar ist.
2615 ist weder durch 3 noch durch 9 teilbar, denn die Quersumme 14 ist weder durch 3 noch durch 9 teilbar.
Korrigiere deine Lösungen mit deinem liebsten Lieblingskorrekturstift.
a) Teilbar durch 3 (Quersumme teilbar durch drei).
- 45, 270, 981, 6780, 31.854, 278.370
- 105, 1.215, 7.431, 42.975
b) Teilbar durch 9 (Quersumme teilbar durch drei).
- 45, 270, 981, 278.370
- 1.215, 42.975
Addiere die gegebenen Ziffern. Überlege, welche Ziffern man
an der/den fehlenden einsetzen kann, damit die Quersumme durch 3 teilbar ist.
z.B. (1) 2.7_3
Summme der gegebenen Ziffern: 2+7+3 = 12
Mögliche Ziffern für die freie Stelle: 0 (Quersumme 12), 3 (Quersumme 15), 6 (Quersumme 18), 9 (Quersumme 21)
Korrigiere deine Lösungen mit deinem liebsten Lieblingskorrekturstift.
(1) 2703, 2733, 2763, 2793; es gibt 4 Möglichkeiten
(2) 5814, 5844, 5874, es gibt 3 Möglichkeiten
(3) 720 573, 723 573, 726 573, 729 573; es gibt 4 Möglichkeiten
Hier kannst du noch einmal üben. Stelle die Schwierigkeit für dich passend ein.
Zusammengesetzte Teilbarkeit
Schau dir das folgende Video an:
Überprüfe dein Wissen mit folgender Learning app:
Korrigiere deine Lösungen mit deinem liebsten Lieblingskorrekturstift.
a)
(1) alle Beispiele mit der Endziffer 0 sind richtig
(2) alle Beispiele mit Endziffer 0 und einer durch 3 teilbaren Quersumme sind richtig
(3) alle Beispiele mit einer geraden Endziffer und einer durch 3 teilbaren Quersumme sind richtig
(4) alle Beispiele mit Endziffer 0 und einer durch 3 teilbaren Quersumme sind richtig
b)
(1) kleinste zweistellige Zahl: 10; größte zweistellige Zahl: 90
(2) kleinste zweistellige Zahl: 30; größte zweistellige Zahl: 90
(3) kleinste zweistellige Zahl: 12; größte zweistellige Zahl: 96