Stoffgruppe (funktionelle Gruppe)	einfachster Vertreter	Name	Benennung: Enden auf	typische Reaktion	Beispiel
Alkane ()	H C ///////// H	Methan	-an	radikalische Substitution Belichtung nötig!	Ethan + Brom \longrightarrow Bromethan + HBr $C_2H_6 + Br_2 \longrightarrow C_2H_5Br + HBr$
Alkene (Doppelbindung)				elektrophile Addition,	Ethen + Brom
				Polymerisation	$C_2H_4 \longrightarrow (-CH_2-CH_2-)_n$
Alkine (Dreifachbindung)				elektrophile Addition, Polymerisation	s. Alkene

Stoffgruppe (funktionelle Gruppe)	einfachster Vertreter	Name	Benennung: Enden auf	typische Reaktion	Bei	spiel
Alkohole				können oxidiert werden	Redoxreaktion: (vereinfacht) Ethanol + Kupferoxid	hanal + Kupfer Gleichungen mit Summenformel

Stoffgruppe (funktionelle Gruppe)	einfachster Vertreter	Name	Benennung: Enden auf	typische Reaktion	Beispiel
Aldehyde (endständige Carbonylgruppe)				nukleophile Addition	Bildung von Halbacetalen: C
Ketone (Carbonylgruppe)				nukleophile Addition	- wie Halbacetalbildung, nur ist die Carbonylgruppe nicht endständig - Es entstehen Halbketale und Vollketale: Valenzstrichformel

Stoffgruppe (funktionelle Gruppe)	einfachster Vertreter	Name	Benennung: Enden auf		Beispiel
Carbonsäuren (Carboxygruppe)				Abspaltung von Protonen (H ⁺)	Carbonsäuren sind in der Regel schwache Säuren. Die sich bildenden Carboxylat-Ionen können wieder Protonen aufnehmen und zurück zur Säure reagieren. Es liegt ein dynamisches, chemisches Gleichgewicht vor:
				Esterkondensation	Essigsäure und Ethanol — Essigsäureethylester + Wasser **Allgemein gilt:** Valenzstrichformel, org. Reste = R